Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 189(12): 464, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424480

RESUMEN

The efficient preparation of ratiometric fluorescent molecularly imprinted polymer (MIP) microspheres that can directly and selectively optosense a herbicide (i.e., 2,4-dichlorophenoxyacetic acid, 2,4-D) in undiluted pure milk is described. The dual fluorescent MIP microparticles were readily obtained through grafting a green 4-nitrobenzo[c][1,2,5]oxadiazole (NBD)-labeled 2,4-D-MIP layer with hydrophilic polymer brushes onto the preformed uniform "living" red CdTe quantum dot (QD)-labeled SiO2 microspheres via one-pot surface-initiated atom transfer radical polymerization (SI-ATRP) in the presence of a polyethylene glycol macro-ATRP initiator. They proved to be highly promising "turn-on"-type fluorescent chemosensors with red CdTe QD (the maximum emission wavelength λe,max around 710 nm) and green NBD (λe,max around 515 nm) as the reference fluorophore and "turn-on"-type responsive fluorophore, respectively. The sensors showed excellent photostability and reusability, high 2,4-D selectivity and sensitivity (the limit of detection = 0.12 µM), and direct visual detection ability (a fluorescent color change occurs from red to blue-green with the concentration of 2,4-D increasing from 0 to 100 µM) in pure bovine milk. The sensors were used for 2,4-D detection with high recoveries (96.0-104.0%) and accuracy (RSD ≤ 4.0%) in pure goat milk at three spiking levels of both 2,4-D and its mixtures with several analogues. This new strategy lays the foundation for efficiently developing diverse complex biological sample-compatible ratiometric fluorescent MIPs highly useful for real-world bioanalyses and diagnostics.


Asunto(s)
Compuestos de Cadmio , Herbicidas , Impresión Molecular , Puntos Cuánticos , Polímeros Impresos Molecularmente , Microesferas , Telurio , Dióxido de Silicio , Herbicidas/análisis , Ácido 2,4-Diclorofenoxiacético/análisis
2.
Int J Biol Macromol ; 270(Pt 1): 132142, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719005

RESUMEN

The severe negative effects of impurities adhering to the external surface of wearable devices can significantly influence the signal transmission, performance, and lifespan of hydrogel sensors. Herein, we developed an ion-conducting hydrogel sensor with a strong adhesive side and a non-adhesive side, similar to a "semi-releasing material." This hydrogel, formulated using deep eutectic solvents obtained from choline chloride and acrylic acid, contained lignin. This versatile material, exhibiting properties similar to semi-releasing materials, was treated with an AlCl3 solution on one side. Additionally, the hydrogel was successfully used as a highly adhesive strain sensor for real-time monitoring of various human activity signals. Moreover, the hydrogel demonstrated excellent environmental tolerance and conductivity. Lignin extracted from wood flour endowed the hydrogel sensor with excellent adhesion energy (up to 427.1 J/m2) and UV resistance. Treatment of hydrogels with AlCl3 completely eliminated their adhesiveness, thereby enhancing fracture elongation and tensile strength. This improvement can be attributed to the absence of carboxyl groups and the formation of a metal-phenolic network. The implementation of this convenient and efficient strategy provides a more feasible approach to address challenges related to impurity adhesion and signal transmission in flexible wearable devices.


Asunto(s)
Hidrogeles , Lignina , Dispositivos Electrónicos Vestibles , Lignina/química , Hidrogeles/química , Humanos , Conductividad Eléctrica , Resistencia a la Tracción , Cloruro de Aluminio/química , Iones/química
3.
Biomater Sci ; 12(5): 1079-1114, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38240177

RESUMEN

Hydrogels, formed from crosslinked hydrophilic macromolecules, provide a three-dimensional microenvironment that mimics the extracellular matrix. They served as scaffold materials in regenerative medicine with an ever-growing demand. However, hydrogels composed of only organic components may not fully meet the performance and functionalization requirements for various tissue defects. Composite hydrogels, containing inorganic components, have attracted tremendous attention due to their unique compositions and properties. Rigid inorganic particles, rods, fibers, etc., can form organic-inorganic composite hydrogels through physical interaction and chemical bonding with polymer chains, which can not only adjust strength and modulus, but also act as carriers of bioactive components, enhancing the properties and biological functions of the composite hydrogels. Notably, incorporating environmental or stimulus-responsive inorganic particles imparts smartness to hydrogels, hence providing a flexible diagnostic platform for in vitro cell culture and in vivo tissue regeneration. In this review, we discuss and compare a set of materials currently used for developing organic-inorganic composite hydrogels, including the modification strategies for organic and inorganic components and their unique contributions to regenerative medicine. Specific emphasis is placed on the interactions between the organic or inorganic components and the biological functions introduced by the inorganic components. The advantages of these composite hydrogels indicate their potential to offer adaptable and intelligent therapeutic solutions for diverse tissue repair demands within the realm of regenerative medicine.


Asunto(s)
Hidrogeles , Medicina Regenerativa , Medicina Regenerativa/métodos , Hidrogeles/química , Matriz Extracelular/química , Sustancias Macromoleculares , Polímeros/análisis , Ingeniería de Tejidos/métodos
4.
Artículo en Inglés | MEDLINE | ID: mdl-23533509

RESUMEN

Hand-foot-and-mouth disease (HFMD), with poorly understood pathogenesis, has become a major public health threat across Asia Pacific. In order to characterize the metabolic changes of HFMD and to unravel the regulatory role of clinical intervention, we have performed a metabolomics approach in a clinical trial. In this study, metabolites profiling was performed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) platform from the HFMD clinical patient samples. The outcome of this study suggested that 31 endogenous metabolites were mainly involved and showed marked perturbation in HFMD patients. In addition, combination therapy intervention showed normalized tendency in HFMD patients in differential pathway. Taken together, these results indicate that metabolomics approach can be used as a complementary tool for the detection and the study of the etiology of HFMD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA