Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 84(7): 3403-9, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22424266

RESUMEN

Continuous glucose measurement has improved the treatment of type 1 diabetes and is typically provided by externally powered transcutaneous amperometric sensors. Self-powered glucose sensors (SPGSs) could provide an improvement over these conventionally powered devices, especially for fully implanted long-term applications where implanted power sources are problematic. Toward this end, we describe a robust SPGS that may be built from four simple components: (1) a low-potential, wired glucose oxidase anode; (2) a Pt/C cathode; (3) an overlying glucose flux-limiting membrane; and (4) a resistor bridging the anode and cathode. In vitro evaluation showed that the sensor output is linear over physiologic glucose concentrations (2-30 mM), even at low O(2) concentrations. Output was independent of the connecting resistor values over the range from 0 to 10 MΩ. The output was also stable over 60 days of continuous in vitro operation at 37 °C in 30 mM glucose. A 5-day trial in a volunteer demonstrated that the performance of the device was virtually identical to that of a conventional amperometric sensor. Thus, this SPGS is an attractive alternative to conventionally powered devices, especially for fully implanted long-term applications.


Asunto(s)
Técnicas Biosensibles/métodos , Electroquímica/métodos , Glucosa/análisis , Microtecnología/métodos , Técnicas Biosensibles/instrumentación , Conductividad Eléctrica , Electroquímica/instrumentación , Electrodos , Glucosa/química , Glucosa Oxidasa/metabolismo , Modelos Lineales , Microtecnología/instrumentación , Oxidación-Reducción , Polivinilos/química
2.
Nat Commun ; 12(1): 4395, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34285224

RESUMEN

The unique properties of self-healing materials hold great potential in the field of biomedical engineering. Although previous studies have focused on the design and synthesis of self-healing materials, their application in in vivo settings remains limited. Here, we design a series of biodegradable and biocompatible self-healing elastomers (SHEs) with tunable mechanical properties, and apply them to various disease models in vivo, in order to test their reparative potential in multiple tissues and at physiological conditions. We validate the effectiveness of SHEs as promising therapies for aortic aneurysm, nerve coaptation and bone immobilization in three animal models. The data presented here support the translation potential of SHEs in diverse settings, and pave the way for the development of self-healing materials in clinical contexts.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles/uso terapéutico , Ingeniería Biomédica , Poliuretanos/uso terapéutico , Animales , Aneurisma de la Aorta/cirugía , Materiales Biocompatibles/química , Modelos Animales de Enfermedad , Elastómeros/química , Fijación de Fractura/métodos , Fracturas Óseas/cirugía , Humanos , Masculino , Ensayo de Materiales , Ratones , Transferencia de Nervios/métodos , Traumatismos de los Nervios Periféricos/cirugía , Poliuretanos/química , Ratas , Porcinos , Porcinos Enanos
3.
Nat Commun ; 11(1): 1107, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107380

RESUMEN

The bio-integrated electronics industry is booming and becoming more integrated with biological tissues. To successfully integrate with the soft tissues of the body (eg. skin), the material must possess many of the same properties including compliance, toughness, elasticity, and tear resistance. In this work, we prepare mechanically and biologically skin-like materials (PSeD-U elastomers) by designing a unique physical and covalent hybrid crosslinking structure. The introduction of an optimal amount of hydrogen bonds significantly strengthens the resultant elastomers with 11 times the toughness and 3 times the strength of covalent crosslinked PSeD elastomers, while maintaining a low modulus. Besides, the PSeD-U elastomers show nonlinear mechanical behavior similar to skins. Furthermore, PSeD-U elastomers demonstrate the cytocompatibility and biodegradability to achieve better integration with tissues. Finally, piezocapacitive pressure sensors are fabricated with high pressure sensitivity and rapid response to demonstrate the potential use of PSeD-U elastomers in bio-integrated electronics.


Asunto(s)
Materiales Biomiméticos/química , Elastómeros/química , Equipos y Suministros Eléctricos , Biomimética/métodos , Reactivos de Enlaces Cruzados/química , Elasticidad , Isocianatos/química , Ensayo de Materiales , Espectroscopía de Protones por Resonancia Magnética , Pirimidinonas/química , Fenómenos Fisiológicos de la Piel
4.
J Mater Chem B ; 7(1): 123-132, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32254956

RESUMEN

Shape memory polymers (SMPs) have exhibited great potential in biomedical applications. However, the typical triggers of shape recovery such as heat, UV light, and electricity may be harmful to humans. Accordingly, water-responsive SMPs have become significant, especially for in vivo applications, due to the intrinsic biocompatibility and ready availability of water. However, the reported water-responsive SMPs are limited and relatively complicated. Here, we design a new water-responsive SMP, poly(butanetetrol fumarate) (PBF); the properties of PBF could be modulated by curing. The cured PBF scaffolds exhibited high shape recovery and fixity rates (>95%). PBF showed good biodegradability, and it could support the attachment, viability and alkaline phosphatase activity of osteoblasts. Furthermore, PBF could be readily functionalized via pendant hydroxyl groups, which was demonstrated by the immobilization and controlled release of bone morphogenetic protein 2. We expect that PBF will be useful for various biomedical applications including water-responsive scaffolds, sensors or actuators.


Asunto(s)
Materiales Biocompatibles , Plásticos Biodegradables , Materiales Inteligentes , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Plásticos Biodegradables/síntesis química , Plásticos Biodegradables/química , Plásticos Biodegradables/farmacología , Células Cultivadas , Fumaratos/química , Osteoblastos/citología , Polienos/química , Polímeros/química , Materiales Inteligentes/síntesis química , Materiales Inteligentes/química , Materiales Inteligentes/farmacología , Andamios del Tejido/química , Agua/química
5.
J Biomater Sci Polym Ed ; 28(15): 1728-1739, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28657862

RESUMEN

Due to its biomimetic mechanical properties to soft tissues, excellent biocompatibility and biodegradability, poly (glycerol sebacate) (PGS) has emerged as a representative bioelastomer and been widely used in biomedical engineering. However, the typical curing of PGS needs high temperature (>120 °C), high vacuum (>1 Torr), and long duration (>12 h), which limit its further applications. Accordingly, we designed, synthesized and characterized a photo/thermo dual curable polymer based on PGS. Treatment of PGS with 2-isocyanatoethyl methacrylate without additional reagents readily produced a methacrylated PGS (PGS-IM). Photo-curing of PGS-IM for 10 min at room temperature using salt leaching method efficiently produced porous scaffolds with a thickness up to 1 mm. PGS-IM was adapt to thermo-curing as well. The combination of photo and thermo curing provided a further way to modulate the properties of resultant porous scaffolds. Interestingly, photo-cured scaffolds exhibited hierarchical porous structures carrying extensive micropores with a diameter from several to hundreds micrometers. All the scaffolds showed good elasticity and biodegradability. In addition, PGS-IM exhibited good compatibility with L929 fibroblast cells. We expect this new PGS based biomaterial will have a wide range of biomedical applications.


Asunto(s)
Materiales Biocompatibles/química , Decanoatos/química , Decanoatos/farmacología , Glicerol/análogos & derivados , Procesos Fotoquímicos , Polímeros/química , Polímeros/farmacología , Temperatura , Materiales Biocompatibles/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Glicerol/química , Glicerol/farmacología , Fenómenos Mecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA