Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Med Genet ; 60(4): 368-379, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35882526

RESUMEN

BACKGROUND: Axenfeld-Rieger syndrome (ARS) is characterised by typical anterior segment anomalies, with or without systemic features. The discovery of causative genes identified ARS subtypes with distinct phenotypes, but our understanding is incomplete, complicated by the rarity of the condition. METHODS: Genetic and phenotypic characterisation of the largest reported ARS cohort through comprehensive genetic and clinical data analyses. RESULTS: 128 individuals with causative variants in PITX2 or FOXC1, including 81 new cases, were investigated. Ocular anomalies showed significant overlap but with broader variability and earlier onset of glaucoma for FOXC1-related ARS. Systemic anomalies were seen in all individuals with PITX2-related ARS and the majority of those with FOXC1-related ARS. PITX2-related ARS demonstrated typical umbilical anomalies and dental microdontia/hypodontia/oligodontia, along with a novel high rate of Meckel diverticulum. FOXC1-related ARS exhibited characteristic hearing loss and congenital heart defects as well as previously unrecognised phenotypes of dental enamel hypoplasia and/or crowding, a range of skeletal and joint anomalies, hypotonia/early delay and feeding disorders with structural oesophageal anomalies in some. Brain imaging revealed highly penetrant white matter hyperintensities, colpocephaly/ventriculomegaly and frequent arachnoid cysts. The expanded phenotype of FOXC1-related ARS identified here was found to fully overlap features of De Hauwere syndrome. The results were used to generate gene-specific management plans for the two types of ARS. CONCLUSION: Since clinical features of ARS vary significantly based on the affected gene, it is critical that families are provided with a gene-specific diagnosis, PITX2-related ARS or FOXC1-related ARS. De Hauwere syndrome is proposed to be a FOXC1opathy.


Asunto(s)
Anomalías del Ojo , Proteínas de Homeodominio , Humanos , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Segmento Anterior del Ojo/anomalías , Anomalías del Ojo/genética , Anomalías del Ojo/diagnóstico , Factores de Transcripción Forkhead/genética , Mutación
2.
Eur J Hum Genet ; 20(12): 1224-33, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22569110

RESUMEN

Anterior segment dysgenesis (ASD) encompasses a broad spectrum of developmental conditions affecting anterior ocular structures and associated with an increased risk for glaucoma. Various systemic anomalies are often observed in ASD conditions such as Axenfeld-Rieger syndrome (ARS) and De Hauwere syndrome. We report DNA sequencing and copy number analysis of PITX2 and FOXC1 in 76 patients with syndromic or isolated ASD and related conditions. PITX2 mutations and deletions were found in 24 patients with dental and/or umbilical anomalies seen in all. Seven PITX2-mutant alleles were novel including c.708_730del, the most C-terminal mutation reported to date. A second case of deletion of the distant upstream but not coding region of PITX2 was identified, highlighting the importance of this recently discovered mechanism for ARS. FOXC1 deletions were observed in four cases, three of which demonstrated hearing and/or heart defects, including a patient with De Hauwere syndrome; no nucleotide mutations in FOXC1 were identified. Review of the literature identified several other patients with 6p25 deletions and features of De Hauwere syndrome. The 1.3-Mb deletion of 6p25 presented here defines the critical region for this phenotype and includes the FOXC1, FOXF2, and FOXQ1 genes. In summary, PITX2 or FOXC1 disruptions explained 63% of ARS and 6% of other ASD in our cohort; all affected patients demonstrated additional systemic defects with PITX2 mutations showing a strong association with dental and/or umbilical anomalies and FOXC1 with heart and hearing defects. FOXC1 deletion was also found to be associated with De Hauwere syndrome.


Asunto(s)
Anomalías del Ojo/genética , Factores de Transcripción Forkhead/genética , Proteínas de Homeodominio/genética , Mutación , Factores de Transcripción/genética , Alelos , Segmento Anterior del Ojo/anomalías , Huesos/anomalías , Variaciones en el Número de Copia de ADN , Anomalías del Ojo/diagnóstico , Enfermedades Hereditarias del Ojo , Facies , Femenino , Eliminación de Gen , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Humanos , Hidrocefalia/diagnóstico , Hidrocefalia/genética , Hipertelorismo/diagnóstico , Hipertelorismo/genética , Inestabilidad de la Articulación/diagnóstico , Inestabilidad de la Articulación/genética , Masculino , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Músculos Oculomotores/anomalías , Proteína del Homeodomínio PITX2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA