Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Cell Rep ; 42(10): 1687-1699, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37479884

RESUMEN

KEY MESSAGE: The reduction in endogenous gibberellin improved drought resistance, but decreased cellulose and lignin contents, which made the mutant prone to lodging. It is well known that gibberellin (GA) is a hormone that plays a vital role in plant growth and development. In recent years, a growing number of studies have found that gibberellin plays an important role in regulating the plant height, stem length, and stressed growth surfaces. In this study, a dwarf maize mutant was screened from an EMS-induced mutant library of maize B73. The mutated gene was identified as KS, which encodes an ent-kaurene synthase (KS) enzyme functioning in the early biosynthesis of GA. The mutant was named as ks3-1. A significant decrease in endogenous GA levels was verified in ks3-1. A significantly decreased stem strength of ks3-1, compared with that of wild-type B73, was found. Significant decreases in the cellulose and lignin contents, as well as the number of epidermal cell layers, were further characterized in ks3-1. The expression levels of genes responsible for cellulose and lignin biosynthesis were induced by exogenous GA treatment. Under drought stress conditions, the survival rate of ks3-1 was significantly higher than that of the wild-type B73. The survival rates of both wild-type B73 and ks3-1 decreased significantly after exogenous GA treatment. In conclusion, we summarized that a decreased level of GA in ks3-1 caused a decreased plant height, a decreased stem strength as a result of cell wall defects, and an increased drought tolerance. Our results shed light on the importance of GA and GA-defective mutants in the genetic improvement of maize and breeding maize varieties.


Asunto(s)
Resistencia a la Sequía , Zea mays , Zea mays/genética , Giberelinas/farmacología , Lignina , Fitomejoramiento , Celulosa
2.
Plant Commun ; 4(6): 100682, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37691288

RESUMEN

Sporopollenin in the pollen cell wall protects male gametophytes from stresses. Phenylpropanoid derivatives, including guaiacyl (G) lignin units, are known to be structural components of sporopollenin, but the exact composition of sporopollenin remains to be fully resolved. We analyzed the phenylpropanoid derivatives in sporopollenin from maize and Arabidopsis by thioacidolysis coupled with nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS). The NMR and GC-MS results confirmed the presence of p-hydroxyphenyl (H), G, and syringyl (S) lignin units in sporopollenin from maize and Arabidopsis. Strikingly, H units account for the majority of lignin monomers in sporopollenin from these species. We next performed a genome-wide association study to explore the genetic basis of maize sporopollenin composition and identified a vesicle-associated membrane protein (ZmVAMP726) that is strongly associated with lignin monomer composition of maize sporopollenin. Genetic manipulation of VAMP726 affected not only lignin monomer composition in sporopollenin but also pollen resistance to heat and UV radiation in maize and Arabidopsis, indicating that VAMP726 is functionally conserved in monocot and dicot plants. Our work provides new insight into the lignin monomers that serve as structural components of sporopollenin and characterizes VAMP726, which affects sporopollenin composition and stress resistance in pollen.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Estudio de Asociación del Genoma Completo , Calor , Lignina/química , Lignina/genética , Lignina/metabolismo , Polen/genética , Polen/metabolismo , Rayos Ultravioleta , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA