Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int Endod J ; 57(2): 208-218, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050666

RESUMEN

AIM: Guanylate-binding protein 5 (GBP5) is an interferon (IFN)-inducible GTPase that plays a crucial role in the cell-autonomous immune response against microbial infections. In this study, we investigated the immunoregulatory role of GBP5 in the pathogenesis of dental pulpitis. METHODOLOGY: Gene-set enrichment analysis (GSEA) was utilized to evaluate the IFN-γ signalling pathway, and the differential expression of GBP mRNA in normal versus inflamed dental pulp tissues was screened, based on Gene Expression Omnibus (GEO) datasets associated with pulpitis. Both normal pulp tissues and inflamed pulp tissues were used for experiments. The expression of IFNs and GBPs was determined by qRT-PCR. Immunoblotting and double immunofluorescence were performed to examine the cellular localization of GBP5 in dental pulp tissues. For the functional studies, IFN-γ priming or lentivirus vector-delivered shRNA was used to, respectively, overexpress or knock down endogenous GBP5 expression in human dental pulp stem cells (HDPSCs). Subsequently, LPS was used to stimulate HDPSCs (overexpressing or with knocked-down GBP5) to establish an in vitro model of inflammation. qRT-PCR and ELISA were employed to examine the expression of proinflammatory cytokines (IL-6, IL-8 and IL-1ß) and cyclooxygenase 2 (COX2). Every experiment has three times of biological replicates and three technical replicates, respectively. Statistical analysis was performed using the Student's t-test and one-way ANOVA, and a p-value of <.05 was considered statistically significant. RESULTS: GSEA analysis based on the GEO dataset revealed a significant activation of the IFN-γ signalling pathway in the human pulpitis group. Among the human GBPs evaluated, GBP5 was selectively upregulated in inflamed dental pulp tissues and predominantly expressed in dental pulp cells. In vitro experiments demonstrated that IFN-γ robustly induced the expression of GBP5 in HDPSCs. Knockdown of GBP5 expression in HDPSCs significantly amplified the LPS-induced upregulation of inflammatory mediators (IL-6, IL-8, IL-1ß and COX2) both with and without IFN-γ priming. CONCLUSION: Our findings demonstrated that GBP5 partook in the pathogenesis of dental pulpitis. The involvement of GBP5 in pulpitis appeared to coordinate the regulation of inflammatory cytokines. Knockdown of GBP5 contributed to the exacerbation of LPS-mediated inflammation.


Asunto(s)
Pulpitis , Humanos , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Pulpa Dental , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Pulpitis/metabolismo
2.
Int Endod J ; 57(1): 37-49, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37874659

RESUMEN

AIM: Dental pulp is richly innervated by nerve fibres, which are mainly involved in the sensation of pain. Aside from pain sensation, little is known regarding the role of dental innervation in reparative dentine formation. We herein generated a mouse model of experimental dentine injury to examine nerve sprouting within the odontoblast and subodontoblastic layers and investigated the potential effects of this innervation in reparative dentinogenesis. METHODOLOGY: Mouse tooth cavity model (bur preparation + etching) was established, and then nerve sprouting, angiogenesis and reparative dentinogenesis were determined by histological and immunofluorescent staining at 1, 3, 7, 14 and 28 days postoperatively. We also established the mouse-denervated molar models to determine the role of sensory and sympathetic nerves in reparative dentinogenesis, respectively. Finally, we applied calcitonin gene-related peptide (CGRP) receptor antagonist to analyse the changes in angiogenesis and reparative dentinogenesis. RESULTS: Sequential histological results from dentine-exposed teeth revealed a significant increase in innervation directly beneath the injured area on the first day after dentine exposure, followed by vascularisation and reparative dentine production at 3 and 7 days, respectively. Intriguingly, abundant type H vessels (CD31+ Endomucin+ ) were present in the innervated area, and their formation precedes the onset of reparative dentine formation. Additionally, we found that sensory denervation led to blunted angiogenesis and impaired dentinogenesis, while sympathetic denervation did not affect dentinogenesis. Moreover, a marked increase in the density of CGRP+ nerve fibres was seen on day 3, which was reduced but remained elevated over the baseline level on day 14, whereas the density of substance P-positive nerve fibres did not change significantly. CGRP receptor antagonist-treated mice showed similar results as those with sensory denervation, including impairments in type H angiogenesis, which confirms the importance of CGRP in the formation of type H vessels. CONCLUSIONS: Dental pulp sensory nerves act as an essential upstream mediator to promote angiogenesis, including the formation of type H vessels, and reparative dentinogenesis. CGRP signalling governs the nerve-vessel-reparative dentine network, which is mostly produced by newly dense sensory nerve fibres within the dental pulp.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Dentina Secundaria , Ratones , Animales , Pulpa Dental/inervación , Angiogénesis , Dolor
3.
Int Endod J ; 56(2): 245-258, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36336782

RESUMEN

AIM: Dentinal tubules serve as disease-causing channels for infiltration and penetration of bacteria and their by-products; which are regarded as the major driver of pathogenesis in pulpal inflammation and infection. In this study, we aimed to evaluate the transdentinal potential of nanoscale cetylpyridinium chloride/cholesterol (CPC/Chol) sterosomes, which are a recently developed type of cationic non-phospholipid liposomal nanocarrier; as well as their intrinsic and universal antibacterial activity. METHODOLOGY: Cetylpyridinium chloride/cholesterol sterosomes were formulated, with a hydrodynamic diameter of 134 ± 4 nm, a low polydisperse index of 0.161 ± 0.007, and a positive zeta potential of 41 ± 3 mV at pH 7.4. Transdentinal diffusion ability of sterosomes was evaluated using human dentine blocks in vitro, and Wistar rat molar teeth in vivo. The intrinsic antibacterial activities of CPC/Chol sterosomes against Enterococcus faecalis, Streptococcus mutans, Fusobacterium nucleatum, and Porphyromonas gingivalis were further examined. RESULTS: Cetylpyridinium chloride/cholesterol sterosomes successfully penetrated through the dentinal tubules, and diffused into the pulp, which could be internalized by dental pulp cells with a high efficiency. In addition, they exhibited substantial levels of intrinsic antibacterial activity against these Gram-positive and Gram-negative endodontic bacteria and their biofilms. CONCLUSIONS: Given its high penetration and diffusion ability through the dentine and pulp, great potential for multi-drug delivery, and distinct intrinsic antibacterial activity; sterosome-based nanocarriers might serve as a promising therapeutic strategy aimed at targeting various specific pathways associated with pulpal diseases. This will help determine and characterize the most appropriate prophylactic and therapeutic targets for early intervention in our future dentistry practice.


Asunto(s)
Cetilpiridinio , Liposomas , Animales , Ratas , Humanos , Cetilpiridinio/farmacología , Ratas Wistar , Colesterol , Antibacterianos/farmacología
4.
Biomed Microdevices ; 22(3): 53, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32780312

RESUMEN

Compared with traditional drug delivery methods, transdermal drug delivery has many advantages in avoiding the side effects in gastrointestinal tract, reducing the fluctuations in drug concentration, and improving patients' compliance. Among them, electrically controlled drug delivery is a promising solution. This work presents a wireless, battery-free and wearable device with electrically controlled drug delivery capability. The electronic component of the device is a flexible circuit board with a temperature sensor and a near-field communication module. With the help of smartphone, the device could wirelessly obtain energy and implement data transmission. The drug delivery component is a paper-based electrode modified with polypyrrole, in which non-steroidal anti-inflammatory drug sodium salicylate was encapsulated. The applied potential for electrically controlled drug delivery was more negative than -0.6 V. The drug release dose and release rates could be controlled by applying potentials with different amplitudes and durations through this device. It provided a minimalized wearable transdermal drug delivery platform for monitoring diseases such as gout. This wearable device shows promising potential in develop closed-loop drug delivery and monitoring systems for the treatment of various diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Electricidad , Polímeros/química , Pirroles/química , Teléfono Inteligente/instrumentación , Salicilato de Sodio/química , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica/instrumentación , Electrodos , Papel
5.
Sensors (Basel) ; 20(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150916

RESUMEN

Cortisol is commonly used as a significant biomarker of psychological or physical stress. With the accelerated pace of life, non-invasive cortisol detection at the point of care (POC) is in high demand for personal health monitoring. In this paper, an ultrasensitive immunosensor using gold nanoparticles/molybdenum disulfide/gold nanoparticles (AuNPs/MoS2/AuNPs) as transducer was explored for non-invasive salivary cortisol monitoring at POC with the miniaturized differential pulse voltammetry (DPV) system based on a smartphone. Covalent binding of cortisol antibody (CORT-Ab) onto the AuNPs/MoS2/AuNPs transducer was achieved through the self-assembled monolayer of specially designed polyethylene glycol (PEG, SH-PEG-COOH). Non-specific binding was avoided by passivating the surface with ethanolamine. The miniaturized portable DPV system was utilized for human salivary cortisol detection. A series current response of different cortisol concentrations decreased and exhibited a linear range of 0.5-200 nM, the detection limit of 0.11 nM, and high sensitivity of 30 µA M-1 with a regression coefficient of 0.9947. Cortisol was also distinguished successfully from the other substances in saliva. The recovery ratio of spiked human salivary cortisol and the variation of salivary cortisol level during one day indicated the practicability of the immunosensor based on the portable system. The results demonstrated the excellent performance of the smartphone-based immunosensor system and its great potential application for non-invasive human salivary cortisol detection at POC.


Asunto(s)
Técnicas Electroquímicas/métodos , Hidrocortisona/análisis , Saliva/química , Teléfono Inteligente , Técnicas Biosensibles/métodos , Humanos , Límite de Detección
6.
Int J Biol Macromol ; 258(Pt 1): 128748, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104693

RESUMEN

Adsorbents consisting of spherical nanoparticles exhibit superior adsorption performance and hence, have immense potential for various applications. In this study, a tri-aldehyde spherical nanoadsorbent premodification platform (CTNAP), which can be grafted with various amino acids, was synthesized from corn stalk. Subsequently, two all-biomass spherical nanoadsorbents, namely, cellulose/l-lysine (CTNAP-Lys) and cellulose/L-cysteine (CTNAP-Cys), were prepared. The morphologies as well as chemical and crystal structures of the two adsorbents were studied in detail. Notably, the synthesized adsorbents exhibited two important characteristics, namely, a spherical nanoparticle morphology and cellulose II crystal structure, which significantly enhanced their adsorption performance. The mechanism of the adsorption of Cr(VI) onto CTNAP-Lys and that of Cu(II) onto CTNAP-Cys were studied in detail, and the adsorption capacities were determined to be as high as 361.69 (Cr(VI)) and 252.38 mg/g (Cu(II)). Using the proposed strategy, it should be possible to prepare other all-biomass cellulose/amino acid spherical nanomaterials with high functional group density for adsorption, medical, catalytic, analytical chemistry, corrosion, and photochromic applications.


Asunto(s)
Celulosa , Contaminantes Químicos del Agua , Celulosa/química , Aminoácidos , Biomasa , Cromo/química , Cisteína , Adsorción , Contaminantes Químicos del Agua/química , Cinética , Concentración de Iones de Hidrógeno
7.
J Endod ; 49(4): 402-409, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36758674

RESUMEN

INTRODUCTION: Pulp calcification (PC) often appears in strong association with nerve fiber bundles, which indicates the important role of dental nerves in the formation of PC. Additionally, given that sensory nerves and calcitonin gene-related peptide (CGRP) secreted from sensory nerve fibers are involved in physiological and pathological bone formation, we aimed to determine whether chronic irritation of sensory nerves can promote the occurrence of PC. METHODS: A sensory nerve irritation rat model was established via ligation of the inferior alveolar nerve (IAN), and face grooming behavior was analyzed as a measure of pain sensation. Two months post-surgery, PC was determined by imaging and histologic analyses. RESULTS: Rats in the IAN-chronic constriction injury (IAN-CCI) group showed spontaneous pain-associated behavior after the operations and pain tolerance on the 60th postoperative day. The imaging and histological analysis showed more calcified particles in the IAN-innervated first and second molars after day 60 of the dental sensory nerve irritation. These calcified masses had a dentin-like structure that contained sparse, irregularly oriented tubules. Compared to the control and sham groups, the odontoblasts located in the periphery of radicular pulp aligned along a thicker layer of predentin; which expressed more nestin with longer and stouter processes in the IAN-CCI group. Additionally, more CGRP-positive nerves were observed in the IAN-CCI group. CONCLUSIONS: Irritation of sensory nerves promotes PC formation, and the increased density of CGRP-immunolabeled fibers probably contributes to this process. This highlights the significance of dental sensory nerves in the formation of PC.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Pulpa Dental , Ratas , Animales , Pulpa Dental/inervación , Diente Molar , Odontoblastos , Dolor
8.
Biosens Bioelectron ; 234: 115363, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37146537

RESUMEN

As an efficient patient management tool of precision medicine, decentralized therapeutic drug monitoring (TDM) provides new vision for therapy adherence and health management of schizophrenia in a convenient manner. To dispense with psychologically burdensome blood sampling and to achieve real-time, noninvasive, and continual circulating tracking of drugs with narrow therapeutic window, we study the temporal metabolism of clozapine, an antipsychotic with severe side effect, in rat saliva by a wireless, integrated and patient-friendly smart lollipop sensing system. Highly sensitive and efficient sensing performance with acceptable anti-biofouling property was realized based on the synergistic effect of electrodeposited reduced graphene oxide and ionic liquids in pretreatment-free saliva with low detection limit and good accuracy cross-validated with conventional method. On this basis, continual salivary drug levels with distinctive pharmacokinetics were found in different routes of drug administration. Pilot experiment reveals a strong correlation between blood and saliva clozapine and a positive relationship between drug dosage and salivary drug level, indicating potential applications presented by noninvasive saliva analysis towards patient-centered and personalized pharmacotherapy and adherence management via proposed smart lollipop system.


Asunto(s)
Técnicas Biosensibles , Clozapina , Esquizofrenia , Animales , Ratas , Clozapina/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Monitoreo de Drogas/métodos , Saliva/metabolismo , Administración del Tratamiento Farmacológico , Técnicas Biosensibles/métodos
9.
Biosens Bioelectron ; 108: 62-68, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29501048

RESUMEN

In the present work, PNIPAM-DNA films were fabricated on the surface of electrodes by GOD-induced radical polymerization, where PNIPAM is poly(N-isopropylacrylamide), DNA represents natural DNA from salmon testes, and GOD is glucose oxidase. The prepared film electrodes demonstrated reversible temperature-, SO42--, and pH-switched cyclic voltammetry (CV) and electrochemiluminescence (ECL) behaviors toward tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) in solution. Particularly, both CV and ECL signals at 1.15 V belonging to Ru(bpy)32+ were significantly amplified by the electrocatalysis of DNA in the films. Moreover, the addition of ferrocenemethanol (FcMeOH) into the solution led to the substantial quenching of the ECL signal of the system and produced a new CV peak pair at 0.35 V. Based upon these experiments, a 4-input/7-output logic gate system was successfully built, which also lead to a 2-to-1 encoder and a 1-to-2 decoder. On the same platform, a more complicated logic device, a half-adder, was also constructed. The present system combined electrocatalysis of natural DNA mediated by Ru(bpy)32+ and multiple stimuli-responsive PNIPAM-DNA films together with simultaneously obtained CV and ECL signals as outputs, leading to the development of novel types of biocomputing systems.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Resinas Acrílicas/química , Biocatálisis , Computadores Moleculares , ADN/química , Polímeros/química , 2,2'-Dipiridil/química , Animales , Complejos de Coordinación , Técnicas Electroquímicas , Electrodos , Compuestos Ferrosos/química , Colorantes Fluorescentes/química , Glucosa Oxidasa/química , Concentración de Iones de Hidrógeno , Masculino , Sulfatos/química
10.
Biosens Bioelectron ; 67: 237-42, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25172029

RESUMEN

The nanoscale Lycurgus cup arrays were hybrid structures of nanocups and nanoparticles with ultrasensitivity to refractive index change. In this study, an electrochemical localized surface plasmon resonance (LSPR) sensor was developed by coupling electrochemistry to LSPR spectroscopy measurement on the nanoscale cup arrays (nanoCA). Based on the combination of electrochemistry and LSPR measurement, the electrochemical LSPR on nanoCA was observed with significant resonance wavelength shifts in electrochemical modulation. The synchronous implementation of cyclic voltammetry and optical transmission spectrum can be used to obtain multiply sensing information and investigate the enhancement for LSPR from electrochemical scanning. The electrochemical enhanced LSPR was utilized as biosensor to detect biomolecules. The electrochemical LSPR biosensor with synchronous electrochemical and optical implement showed higher sensitivity than that of conventional optical LSPR measurement. Detecting with multi-transducer parameters and high sensitivity, the electrochemical LSPR provided a promising approach for chemical and biological detection.


Asunto(s)
Biopolímeros/análisis , Técnicas Biosensibles/instrumentación , Oro/química , Nanopartículas del Metal/química , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Nanopartículas del Metal/ultraestructura , Nanotecnología/instrumentación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA