Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Small ; 19(43): e2304379, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37365958

RESUMEN

The formation of biofilm and thrombus on medical catheters poses a significant life-threatening concern. Hydrophilic anti-biofouling coatings upon catheter surfaces with complex shapes and narrow lumens are demonstrated to have the potential in reducing complications. However, their effectiveness is constrained by poor mechanical stability and weak substrate adhesion. Herein, a novel zwitterionic polyurethane (SUPU) with strong mechanical stability and long-term anti-biofouling is developed by controlling the ratio of sulfobetaine-diol and ureido-pyrimidinone. Once immersed in water, as-synthesized zwitterionic coating (SUPU3 SE) would undergo a water-driven segment reorientation to obtain much higher durability than its direct drying one, even under various extreme treatments, including acidic solution, abrasion, ultrasonication, flushing, and shearing, in PBS at 37 °C for 14 days. Moreover, SUPU3 SE coating could achieve a 97.1% of exceptional reducing protein fouling, complete prevention of cell adhesion, and long-lasting anti-biofilm performance even after 30 days. Finally, the good anti-thrombogenic formations of SUPU3 SE coating with bacterial treatment are validated in blood circulation through an ex vivo rabbit arteriovenous shunt model. This work provides a facile approach to fabricating stable hydrophilic coating through a simple solvent exchange to reduce thrombosis and infection of biomedical catheters.


Asunto(s)
Adhesión Bacteriana , Poliuretanos , Animales , Conejos , Agua , Solventes , Catéteres
2.
Biomacromolecules ; 22(10): 4306-4315, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34569790

RESUMEN

Dual-function antibacterial surfaces have exhibited promising potential in addressing implant-associated infections. However, both bactericidal and antifouling properties need to be further improved prior to practical uses. Herein, we report the preparation and properties of a linear block copolymer coating (LP-KF) and a single-chain nanoparticle coating (NP-KF) with poly(ethylene glycol) (PEG) and cationic polypeptide segments. NP-KF with cyclic PEG segments and densely charged polypeptide segments was expected to display improved bactericidal and antifouling properties. LP-KF was prepared by the combination of ring-opening polymerization of N-carboxyanhydride (NCA) monomers and subsequent deprotection. NP-KF was prepared by intramolecular cross-linking of LP-KF in diluted solutions. Both LP-KF- and NP-KF-coated PDMS surfaces were prepared by dipping with polydopamine-coated surfaces. They showed superior in vitro bactericidal activity against both Staphylococcus aureus and Escherichia coli with >99.9% killing efficacy, excellent protein adsorption resistance, antibacterial adhesion, and low cytotoxicity. The NP-KF coating showed higher bactericidal activity and antifouling properties than its linear counterpart. It also showed significant anti-infective property and histocompatibility in vivo, which makes it a good candidate for implants and biomedical device applications.


Asunto(s)
Incrustaciones Biológicas , Nanopartículas , Antibacterianos/farmacología , Adhesión Bacteriana , Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/farmacología , Staphylococcus aureus , Propiedades de Superficie
3.
Biomacromolecules ; 17(5): 1696-704, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27049327

RESUMEN

Although polycationic surfaces have high antimicrobial efficacies, they suffer from high toxicity to mammalian cells and severe surface accumulation of dead bacteria. For the first time, we propose a surface-initiated photoiniferter-mediated polymerization (SI-PIMP) strategy of constructing a "cleaning" zwitterionic outer layer on a polycationic bactericidal background layer to physically hinder the availability of polycationic moieties for mammalian cells in aqueous service. In dry conditions, the polycationic layer exerts the contact-active bactericidal property toward the adherent bacteria, as the zwitterionic layer collapses. In aqueous environment, the zwitterionic layer forms a hydration layer to significantly inhibit the attachment of planktonic bacteria and the accumulation of dead bacteria, while the polycationic layer kills bacteria occasionally deposited on the surface, thus preserving the antibacterial capability for a long period. More importantly, the zwitterionic hydrated layer protects the mammalian cells from toxicity induced by the bactericidal background layer, and therefore hierarchical antibacterial surfaces present much better biocompatibility than that of the naked cationic references. The dominant antibacterial mechanism of the hierarchical surfaces can switch from the bactericidal efficacy in dry storage to the bacteria repellent capability in aqueous service, showing great advantages in the infection-resistant applications.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Fibroblastos/efectos de los fármacos , Polímeros/química , Animales , Antibacterianos/química , Bacterias/crecimiento & desarrollo , Adhesión Bacteriana , Infecciones Bacterianas/microbiología , Células Cultivadas , Materiales Biocompatibles Revestidos , Fibroblastos/citología , Ratones , Polimerizacion , Propiedades de Superficie
4.
J Mater Chem B ; 12(3): 637-649, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38165820

RESUMEN

The development of minimally invasive technology has promoted the widespread use of implant interventional materials, which play an important role in alleviating patients' pain during and after surgery. Metal-organic frameworks (MOFs) and their related hybrids formed by bridging ligands and metal nodes via covalent bonds represent one of the smart platforms in implant interventional fields due to their large surface area, adjustable compositions and structures, biodegradability, etc. Significant progresses in the implantation application of MOF-based materials have been achieved recently, but these studies are still in the initial stage. This review highlights the recent advances of MOFs and their related hybrids in orthopedic implantation, cardio-vascular implantation, neural tissue engineering, and biochemical sensing. Each correction between the structural features of MOFs and their corresponding implanted works is highlighted. Finally, the confronting challenges and future perspectives in the implant interventional field are discussed.


Asunto(s)
Estructuras Metalorgánicas , Ortopedia , Humanos , Materiales Dentales , Ingeniería , Corazón
5.
ACS Nano ; 18(11): 8517-8530, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38442407

RESUMEN

Bone glue with robust adhesion is crucial for treating complicated bone fractures, but it remains a formidable challenge to develop a "true" bone glue with high adhesion strength, degradability, bioactivity, and satisfactory operation time in clinical scenarios. Herein, inspired by the hydroxyapatite and collagen matrix composition of natural bone, we constructed a nanohydroxyapatite (nHAP) reinforced osteogenic backbone-degradable superglue (O-BDSG) by in situ radical ring-opening polymerization. nHAP significantly enhances adhesive cohesion by synergistically acting as noncovalent connectors between polymer chains and increasing the molecular weight of the polymer matrix. Moreover, nHAP endows the glue with bioactivity to promote osteogenesis. The as-prepared glue presented a 9.79 MPa flexural adhesion strength for bone, 4.7 times that without nHAP, and significantly surpassed commercial cyanoacrylate (0.64 MPa). O-BDSG exhibited degradability with 51% mass loss after 6 months of implantation. In vivo critical defect and tibia fracture models demonstrated the promoted osteogenesis of the O-BDSG, with a regenerated bone volume of 75% and mechanical function restoration to 94% of the native tibia after 8 weeks. The glue can be flexibly adapted to clinical scenarios with a curing time window of about 3 min. This work shows promising prospects for clinical application in orthopedic surgery and may inspire the design and development of bone adhesives.


Asunto(s)
Procedimientos Ortopédicos , Osteogénesis , Pirenos , Regeneración Ósea , Cementos para Huesos , Durapatita/farmacología , Polímeros , Andamios del Tejido
6.
J Mater Chem B ; 12(19): 4574-4583, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38683108

RESUMEN

Lipoic acid (LA) is a versatile antioxidant that has been used in the treatment of various oxidation-reduction diseases over the past 70 years. Owing to its large five-membered ring tension, the dynamic disulfide bond of LA is highly active, enabling the formation of poly(lipoic acid) (PLA) via ring-opening polymerization (ROP). Herein, we first summarize disulfide-mediated ROP polymerization strategies, providing basic routes for designing and preparing PLA-based materials. PLA, as a biologically derived, low toxic, and easily modified material, possesses dynamic disulfide bonds and universal non-covalent carboxyl groups. We also shed light on the biomedical applications of PLA-based materials based on their biological and structural features and further divide recent works into six categories: antibacterial, anti-inflammation, anticancer, adhesive, flexible electronics, and 3D-printed tissue scaffolds. Finally, the challenges and future prospects associated with the biomedical applications of PLA are discussed.


Asunto(s)
Materiales Biocompatibles , Ácido Tióctico , Animales , Humanos , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Polimerizacion , Polímeros/química , Polímeros/farmacología , Ácido Tióctico/química , Ácido Tióctico/farmacología , Andamios del Tejido/química
7.
Adv Healthc Mater ; 12(4): e2202096, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36285359

RESUMEN

Constructing multifunctional surfaces is one of the practical approaches to address catheter-related multiple complications but is generally time-consuming and substrate-dependent. Herein, a novel anti-adhesion, antibacterial, low friction, and robustness coating on medical catheters are developed via a universal and readily scalable method based on a regulable polyelectrolyte surfactant complex. The complex is rapidly assembled in one step by electrostatic and hydrophobic interactions between organosilicon quaternary ammonium surfactant (N+ Si ) and adjustable polyelectrolyte with cross-linkable, anti-adhesive, and anionic groups. The alcohol-soluble feature of the complex is conducive to the rapid formation of coatings on any medical device with arbitrary shapes via dip coating. Different from the conventional polyelectrolyte-surfactant complex coating, the regulated complex coating with nonleaching mode could be stable in harsh conditions (high concentration salt solution, organic reagents, etc.) because of the cross-linked structure while improving the biocompatibility and reducing the adhesion of various bacteria, proteins, and blood cells. The coated catheter exhibits good antibacterial infection in vitro and in vivo, owing to the synergistic effect of N+ Si and zwitterionic groups. Therefore, the rationally designed complex supplies a facile coating approach for the potential development in combating multiple complications of the medical catheter.


Asunto(s)
Catéteres , Tensoactivos , Polielectrolitos , Tensoactivos/farmacología , Catéteres/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Compuestos de Amonio Cuaternario , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química
8.
ACS Macro Lett ; 12(4): 428-432, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36926830

RESUMEN

Polymer coatings with improved surface antibacterial properties are of great importance for the application and development of implantable medical devices. Herein, we report the design, preparation, and antibacterial properties of a series of brush polymers (Dex-KEs) with hydrophilic dextran main-chains and mixed-charge polypeptide (KE) side-chains. Dex-KEs showed higher bactericidal activity and antifouling and antibiofilm properties than maleic acid modified dextran (Dex-Ma), KE, Dex-Ma/KE blend coatings, and brush polymer coatings with hydrophobic main-chains (AcDex-KEs). They also showed negligible in vitro cytotoxicity toward different mammalian cells and good in vivo biocompatibility. Dex-KE-coated implants exhibited potent in vivo resistance to bacterial infection before or after implantation.


Asunto(s)
Dextranos , Polímeros , Animales , Polímeros/farmacología , Dextranos/farmacología , Staphylococcus aureus , Materiales Biocompatibles Revestidos/farmacología , Antibacterianos/farmacología , Mamíferos
9.
Nat Commun ; 14(1): 6063, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770451

RESUMEN

Adhesives with both robust adhesion and tunable degradability are clinically and ecologically vital, but their fabrication remains a formidable challenge. Here we propose an in situ radical ring-opening polymerization (rROP) strategy to design a backbone-degradable robust adhesive (BDRA) in physiological environment. The hydrophobic cyclic ketene acetal and hydrophilic acrylate monomer mixture of the BDRA precursor allows it to effectively wet and penetrate substrates, subsequently forming a deep covalently interpenetrating network with a degradable backbone via redox-initiated in situ rROP. The resulting BDRAs show good adhesion strength on diverse materials and tissues (e.g., wet bone >16 MPa, and porcine skin >150 kPa), higher than that of commercial cyanoacrylate superglue (~4 MPa and 56 kPa). Moreover, the BDRAs have enhanced tunable degradability, mechanical modulus (100 kPa-10 GPa) and setting time (seconds-hours), and have good biocompatibility in vitro and in vivo. This family of BDRAs expands the scope of medical adhesive applications and offers an easy and environmentally friendly approach for engineering.


Asunto(s)
Adhesivos Tisulares , Porcinos , Animales , Adhesivos Tisulares/química , Polimerizacion , Adhesivos
10.
Adv Healthc Mater ; 11(18): e2200977, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35816736

RESUMEN

Polyetheretherketone (PEEK) as a popular orthopaedic implant is usually fabricated into a hierarchically porous structure for improving osteogenic activity. However, the applications are limited due to the excessively high processing temperature and uncontrollably tedious modification routes. Here, an amorphous polyaryletherketone with carboxyl groups (PAEK-COOH) is synthesized and fabricated to the hierarchically controllable porous scaffolds via a low-temperature 3D-printing process. The prepared PAEK-COOH scaffolds present controllable porous structures ranging from nano- to micro-scale, and their mechanical strengths are comparable to that of trabecular bone. More importantly, the in vitro experiments show that the nanoporous surface is conducive to promoting cellular adhesion, and carboxyl groups can induce hydroxyapatite mineralization via electrostatic interaction. The in vivo experiments demonstrate that the PAEK-COOH scaffolds offer much better osseointegration without additional active ingredients, compared to that of PEEK. Therefore, this work will not only develop a promising candidate for bone tissue engineering, but provide a viable method to design PAEK biomaterials.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Benzofenonas , Materiales Biocompatibles , Biomineralización , Hidroxiapatitas , Cetonas/química , Polietilenglicoles/química , Polímeros , Porosidad , Impresión Tridimensional , Temperatura , Andamios del Tejido/química
11.
ACS Macro Lett ; 11(1): 46-52, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35574805

RESUMEN

Functional polymers of nylon-6, particularly those with sustained antibacterial functions, have many practical applications. However, the development of functional ε-caprolactam monomers for the subsequent ring-opening copolymerization (ROCOP) formation of these materials remains a challenge. Here we report a t-BuP4-mediated ROCOP of dimethyl-protected cyclic lysine with ε-caprolactam, followed by quaternization, affording antibacterial nylon-6 polymers bearing quaternary ammonium functionality with high molecular weight (up to 77.4 kDa). The antibacterial nylon-6 polymers exhibited good physical and mechanical properties and strong antimicrobial activities. At 25 mol % quaternary ammonium group incorporation, the nylon-6 polymer demonstrated complete killing of Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). The results from this study may provide a strategy for the facile preparation of antibacterial nylon-6 polymers to addressing the public health and safety challenges.


Asunto(s)
Compuestos de Amonio , Caprolactama , Antibacterianos/farmacología , Caprolactama/análogos & derivados , Caprolactama/farmacología , Escherichia coli , Lisina/farmacología , Polímeros/farmacología
12.
Biomater Sci ; 9(19): 6425-6433, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34582529

RESUMEN

Multifunctional coatings have gained significant attention for their promising potential to address the issue of medical device-related infections. However, they usually have multiple components in one layer which decreases the density of functional groups on surfaces and hence reduces the biological properties. Herein, we report a mono-component and sulfonate-based anionic polypeptide coating with on-demand antibacterial activity, antifouling property, and biocompatibility. The anionic polypeptide was prepared by ring-opening polymerization of L-cysteine-based N-carboxyanhydride (NCA) with allyl groups and a subsequent thiol-ene reaction to incorporate the sulfonate pendants. It adopted a 17.1-19.5% ß-sheet conformation and self-assembled into a spherical nanoparticle. The polypeptide coating showed excellent in vitro antibacterial activity against both Gram-positive (i.e., S. aureus) and Gram-negative bacteria (i.e., E. coli) with >99% killing efficacy after acidic solution treatment and prominent antifouling property and biocompatibility after weak base treatment. An in vivo study revealed that the sulfonate-based polypeptide-coated polydimethylsiloxane (PDMS) exhibited good anti-infection property and histocompatibility.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos , Escherichia coli , Péptidos
13.
ACS Appl Bio Mater ; 3(11): 7930-7940, 2020 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-35019533

RESUMEN

PEEK had been used to fabricate artificial bones by 3D printing widely, but it expressed unsatisfactory interlayer performance of 3D printing and weak compatibility with nano hydroxyapatite(nHA) due to the limits of molecular structures. Here an amorphous poly(aryl ether ketone) for 3D bone printing, PEK-CN, was designed and synthesized via nucleophilic substitution from 4,4'-difluorobenzophenone, phenolphthalein and 2,6-dichlorobenzonitrile, which possessed much stronger interlayer strength due to van der Waals force between polar groups(-CNs). Specifically, the stronger interlayer strength resulted in lower porosity(3% with 100% infill rate) and more comparable mechanical properties(the maximum tensile strength was ∼110 MPa) to cortical bone. Importantly, PEK-CN had passed in vitro cytotoxicity testing and samples of human mandible and maxillary bones based on PEK-CN were printed by fused deposition modeling(FDM) successfully. Moreover, PEK-CN/nHA composites were obtained to enhance bioactivity of resin, and PEK-CN without limits of crystal lattices expressed excellent compatibility with nano hydroxyapatite. Our work provided a high performance resin for 3D bone printing, which would bring better solutions for artificial bone materials.

14.
Mater Sci Eng C Mater Biol Appl ; 113: 110936, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32487377

RESUMEN

Pathogenic bacterial infections associated with wound healing progress usually result in serious complications. Herein, biocompatible and antimicrobial electrospun nanofibrous mats with photodynamic therapy (PDT) effect were fabricated to accelerate the infected wound healing. The nanofibrous mats were fabricated by co-electrospining of polyanionic poly(γ-glutamic acid) (γ-PGA) and cationic photosensitizer 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetra (p-toluenesulfonate) (TMPyP) in aqueous solution and stabilized by the chemical crosslinking. The as-prepared nanofibrous mats can not only confer the moist microenvironment to the wound bed, but also provide potent bactericidal activity upon visible light irradiation by releasing the cytotoxic reactive oxygen species (ROS). The antibacterial assay in vitro showed that they can effectively eradicate the board-spectrum bacteria at a relatively low loading dose of TMPyP (e.g., 0.1 wt%). Meanwhile, those nanofibrous mats showed good biocompatibility with no obvious adverse effects on mammalian cells and red blood cells (RBCs). The animal test in vivo suggested that the restrained inflammatory reaction and better wound healing could be achieved upon timely and effective antibacterial treatment with negligible local toxicities. This biocompatible and antibacterial γ-PGA-TMPyP nanofibrous mat may show great potential in practical infection-resistant applications, particularly for wound dressing applications.


Asunto(s)
Nanofibras/química , Ácido Poliglutámico/análogos & derivados , Animales , Vendajes , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Femenino , Hemólisis/efectos de los fármacos , Luz , Ratones , Ratones Endogámicos BALB C , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Ácido Poliglutámico/química , Porfirinas/química , Porfirinas/farmacología , Porfirinas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/patología , Infecciones Estafilocócicas/veterinaria , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
15.
ACS Appl Mater Interfaces ; 12(38): 42576-42585, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32867474

RESUMEN

Surface-tethered hierarchical polymer brushes find wide applications in the development of antibacterial surfaces due to the well-defined spatial distribution and the separate but complementary properties of different blocks. Existing methods to achieve such polymer brushes mainly focused on inorganic material substrates, precluding their practical applications on common medical devices. In this work, a hierarchical polymer brush system is proposed and facilely constructed on polymeric substrates via light living graft polymerization. The polymer brush system with micrometer-scale thickness exhibits a unique hierarchical architecture consisting of a poly(hydroxyethyl methacrylate) (PHEMA) outer layer and an anionic inner layer loading with cationic antimicrobial peptide (AMP) via electrostatic attraction. The surface of this system inhibits the initial adhesion of bacteria by the PHEMA hydration outer layer under neutral pH conditions; when bacteria adhere and proliferate on this surface, the bacterially induced acidification triggers the cleavage of labile amide bonds within the inner layer to expose the positively charged amines and vigorously release melittin (MLT), allowing the surface to timely kill the adhering bacteria. The hierarchical surface employs multiple antibacterial mechanisms to combat bacterial infection and shows high sensitiveness and responsiveness to pathogens. A new paradigm is supplied by this modular hierarchical polymer brushes system for the progress of intelligent surfaces on universal polymer substrates, showing great potential to a promising strategy for preventing infection related to medical devices.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Polímeros/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Adhesión Bacteriana/efectos de los fármacos , Concentración de Iones de Hidrógeno , Ratones , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
16.
ACS Appl Mater Interfaces ; 12(6): 7617-7630, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31951700

RESUMEN

Inhibiting the attachment of bacteria and the formation of biofilms on surfaces of materials and devices is the key to ensure public safety and is also the focus of attention and research. Here we report on the synthesis of multifunctional antibacterial materials based on water dispersible random copolymers containing a fluorinated block, poly(acrylic acid-co-1H,1H,2H,2H-perfluorododecyl acrylate) (PAA-co-PFDA), and poly(hexamethylene biguanide) hydrochloride (PHMB). PAA-co-PFDA copolymers were synthesized through a simple free radical polymerization. After lightly cross-linking of PAA-co-PFDA and complexation with PHMB, multifunctional antibacterial PAA-co-PFDA/PHMB complex nanoparticles were generated, which can form transparent coatings on various substrates. The resultant coating has aggregation-induced emission character which can be used to observe the uniformity of the coating on a catheter and has a potential application as a fluorescence probe. It has been demonstrated that the PAA-co-PFDA/PHMB complex nanoparticle coatings can resist bacterial adhesion in physiological environment and exhibit excellent antibacterial activity in infection environment. In vitro and in vivo experiments indicated that the PAA-co-PFDA/PHMB complex nanoparticle coated catheters exhibited excellent antibacterial activity and possessed good biocompatibility. This method is simple and scalable, which is important for future commercialization. The attractive multifunctional properties of the PAA-co-PFDA/PHMB complex nanoparticles, such as antifouling, antimicrobial, emission, and pH-responsive release character, have great potential application in a wide range of biomedical fields.


Asunto(s)
Antibacterianos/farmacología , Infecciones Relacionadas con Catéteres/prevención & control , Catéteres/microbiología , Polímeros de Fluorocarbono/síntesis química , Animales , Antibacterianos/química , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos , Infecciones Relacionadas con Catéteres/microbiología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Femenino , Polímeros de Fluorocarbono/química , Humanos , Ratones , Ratones Endogámicos BALB C , Agua/química
17.
ACS Appl Mater Interfaces ; 11(30): 26581-26589, 2019 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-31287647

RESUMEN

Herein, we developed a nanocomposite membrane with synergistic photodynamic therapy and photothermal therapy antibacterial effects, triggered by a single near-infrared (NIR) light illumination. First, upconversion nanoparticles (UCNPs) with a hierarchical structure (UCNPs@TiO2) were synthesized, which use NaYF4:Yb,Tm nanorods as the core and TiO2 nanoparticles as the outer shell. Then, nanosized graphene oxide (GO), as a photothermal agent, was doped into UCNPs@TiO2 core-shell nanoparticles to obtain UCNPs@TiO2@GO. Afterward, the mixture of UCNPs@TiO2@GO in poly(vinylidene) fluoride (PVDF) was applied for electrospinning to generate the nanocomposite membrane (UTG-PVDF). Generation of reactive oxygen species (ROS) and changes of temperature triggered by NIR action were both investigated to evaluate the photodynamic and photothermal properties. Upon a single NIR light (980 nm) irradiation for 5 min, the nanocomposite membrane could simultaneously generate ROS and moderate temperature rise, triggering synergistic antibacterial effects against both Gram-positive and -negative bacteria, which are hard to be achieved by an individual photodynamic or photothermal nanocomposite membrane. Additionally, the as-prepared membrane can effectively restrain the inflammatory reaction and accelerate wound healing, thus exhibiting great potentials in treating infectious complications in wound healing progress.


Asunto(s)
Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Fotoquimioterapia , Antibacterianos/farmacología , Antibacterianos/efectos de la radiación , Bacterias Gramnegativas/patogenicidad , Bacterias Grampositivas/patogenicidad , Grafito/química , Grafito/farmacología , Humanos , Rayos Infrarrojos , Nanocompuestos/química , Nanocompuestos/efectos de la radiación , Nanopartículas/química , Nanopartículas/efectos de la radiación , Nanopartículas/uso terapéutico , Nanotubos/química , Nanotubos/efectos de la radiación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Polivinilos/química , Polivinilos/uso terapéutico , Especies Reactivas de Oxígeno/química , Titanio/química , Titanio/farmacología
18.
ACS Appl Mater Interfaces ; 10(45): 39257-39267, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30346131

RESUMEN

Antibacterial coatings have been considered as an effective method for preventing the implant-associated infections caused by the bacterial colonization. In this study, we report a water-insoluble polyelectrolyte-surfactant complex, poly(hexamethylene biguanide) hydrochloride-sodium stearate (PHMB-SS) that can be facilely coated onto the surfaces of biomedical catheter and kill the bacteria by releasing the PHMB and prevent the generation of the biofilm. The PHMB-SS-coated surfaces showed better bactericidal activity toward Staphylococcus aureus and Escherichia coli. The PHMB-SS-coated catheters could not only relatively prevent the bacterial colonization in vitro but also in an implant-associated bacterial infection animal model in vivo. Moreover, no significant cytotoxicity and host response were observed in vitro and in vivo, indicating the high biocompatibility of the coating. The water-insoluble antibacterial coating reported in this work represents a novel approach to build a simple and effective coating for the prevention of device-associated infections.


Asunto(s)
Antibacterianos/administración & dosificación , Antibacterianos/química , Catéteres/microbiología , Materiales Biocompatibles Revestidos/química , Animales , Biguanidas/química , Biopelículas/efectos de los fármacos , Infecciones Relacionadas con Catéteres/prevención & control , Línea Celular , Eritrocitos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Femenino , Fibroblastos , Ratones , Ratones Endogámicos BALB C , Conejos , Solubilidad , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Ácidos Esteáricos/química , Agua
19.
Carbohydr Polym ; 193: 9-18, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29773402

RESUMEN

The success of a dental implant relies on the presence of an optimal alveolar ridge. The aim of this study was to fabricate HPMC crosslinked chitosan based scaffolds for alveolar bone repair. Our results indicated that HPMC crosslinked CH/BG foams presented better morphological structure (132-90.5 µm) and mechanical responses (0.451 MPa with 100 mg BG) as confirmed by SEM analysis and fatigue testing respectively. Cytotoxicity analysis at day 2, 4 and 8 demonstrated that all composites were non-toxic and supported cellular viability. Calcein AM/propidium iodide staining, Hoechst nuclear staining and cell adhesion assay reiterated that scaffolds supported pre-osteoblast cell growth, adhesion and proliferation. Differentiation potential of pre-osteoblast cells was enhanced as confirmed by alkaline phosphate assay. Furthermore, loss of S. aureus viability as low as 35% was attributed to synergistic effects of components. Overall, our results suggest that HPMC crosslinked scaffolds are potential candidates for alveolar bone repair.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Trasplante Óseo , Quitosano/farmacología , Reactivos de Enlaces Cruzados/farmacología , Derivados de la Hipromelosa/farmacología , Óxido de Zinc/farmacología , Células 3T3 , Animales , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Quitosano/química , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Vidrio/química , Derivados de la Hipromelosa/química , Ratones , Óxido de Zinc/química
20.
Colloids Surf B Biointerfaces ; 149: 260-270, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27770696

RESUMEN

Bacterial infections are problematic in many healthcare-associated devices. Antibacterial surfaces integrating the strength of bacteria repellent and bactericidal functions exhibit an encouraging efficacy in tackling this problem. Herein, a hierarchical dual-function antibacterial polymer brush coating that integrates an antifouling bottom layer with a bactericidal top layer is facilely constructed via living photograft polymerization. Excellent resistance to bacterial attachment is correlated with the antifouling components, and good bactericidal activity is afforded by the bactericidal components, and therefore the hierarchical coating shows an excellent long-term antibacterial capability. In addition, due to the presence of the hydrophilic background layer, the hierarchical surface has the greatly improved biocompatibility, as shown by the suppression of platelet adhesion and activation, the inhibition of erythrocyte adhesion and damage, and low toxicity against mammalian cells. The hierarchical polymer brush system provides the basis for the development of long-term antibacterial and biocompatible surfaces.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Metacrilatos/química , Polietilenglicoles/química , Silicio/química , Animales , Antibacterianos/química , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Plaquetas/citología , Plaquetas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Eritrocitos/citología , Eritrocitos/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Luz , Ratones , Procesos Fotoquímicos , Activación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Polimerizacion , Conejos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA