Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Med Genet ; 49(3): 179-83, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22368300

RESUMEN

BACKGROUND: DYNC1H1 encodes the heavy chain protein of the cytoplasmic dynein 1 motor protein complex that plays a key role in retrograde axonal transport in neurons. Furthermore, it interacts with the LIS1 gene of which haploinsufficiency causes a severe neuronal migration disorder in humans, known as classical lissencephaly or Miller-Dieker syndrome. AIM: To describe the clinical spectrum and molecular characteristics of DYNC1H1 mutations. METHODS: A family based exome sequencing approach was used to identify de novo mutations in patients with severe intellectual disability. RESULTS: In this report the identification of two de novo missense mutations in DYNC1H1 (p.Glu1518Lys and p.His3822Pro) in two patients with severe intellectual disability and variable neuronal migration defects is described. CONCLUSION: Since an autosomal dominant mutation in DYNC1H1 was previously identified in a family with the axonal (type 2) form of Charcot- Marie-Tooth (CMT2) disease and mutations in Dync1h1 in mice also cause impaired neuronal migration in addition to neuropathy, these data together suggest that mutations in DYNC1H1 can lead to a broad phenotypic spectrum and confirm the importance of DYNC1H1 in both central and peripheral neuronal functions.


Asunto(s)
Anomalías Múltiples/genética , Movimiento Celular , Dineínas Citoplasmáticas/genética , Discapacidad Intelectual/genética , Mutación Missense , Neuronas/fisiología , Anomalías Múltiples/enzimología , Anomalías Múltiples/patología , Animales , Secuencia de Bases , Niño , Análisis Mutacional de ADN , Exoma , Femenino , Estudios de Asociación Genética , Humanos , Discapacidad Intelectual/enzimología , Discapacidad Intelectual/patología , Masculino , Ratones , Persona de Mediana Edad , Datos de Secuencia Molecular
2.
HGG Adv ; 2(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33791682

RESUMEN

The Joubert-Meckel syndrome spectrum is a continuum of recessive ciliopathy conditions caused by primary cilium dysfunction. The primary cilium is a microtubule-based, antenna-like organelle that projects from the surface of most human cell types, allowing them to respond to extracellular signals. The cilium is partitioned from the cell body by the transition zone, a known hotspot for ciliopathy-related proteins. Despite years of Joubert syndrome (JBTS) gene discovery, the genetic cause cannot be identified in up to 30% of individuals with JBTS, depending on the cohort, sequencing method, and criteria for pathogenic variants. Using exome and targeted sequencing of 655 families with JBTS, we identified three individuals from two families harboring biallelic, rare, predicted-deleterious missense TMEM218 variants. Via MatchMaker Exchange, we identified biallelic TMEM218 variants in four additional families with ciliopathy phenotypes. Of note, four of the six families carry missense variants affecting the same highly conserved amino acid position 115. Clinical features included the molar tooth sign (N = 2), occipital encephalocele (N = 5, all fetuses), retinal dystrophy (N = 4, all living individuals), polycystic kidneys (N = 2), and polydactyly (N = 2), without liver involvement. Combined with existing functional data linking TMEM218 to ciliary transition zone function, our human genetic data make a strong case for TMEM218 dysfunction as a cause of ciliopathy phenotypes including JBTS with retinal dystrophy and Meckel syndrome. Identifying all genetic causes of the Joubert-Meckel spectrum enables diagnostic testing, prognostic and recurrence risk counseling, and medical monitoring, as well as work to delineate the underlying biological mechanisms and identify targets for future therapies.

3.
Eur J Hum Genet ; 24(8): 1145-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26757981

RESUMEN

Recently WAC was reported as a candidate gene for intellectual disability (ID) based on the identification of a de novo mutation in an individual with severe ID. WAC regulates transcription-coupled histone H2B ubiquitination and has previously been implicated in the 10p12p11 contiguous gene deletion syndrome. In this study, we report on 10 individuals with de novo WAC mutations which we identified through routine (diagnostic) exome sequencing and targeted resequencing of WAC in 2326 individuals with unexplained ID. All but one mutation was expected to lead to a loss-of-function of WAC. Clinical evaluation of all individuals revealed phenotypic overlap for mild ID, hypotonia, behavioral problems and distinctive facial dysmorphisms, including a square-shaped face, deep set eyes, long palpebral fissures, and a broad mouth and chin. These clinical features were also previously reported in individuals with 10p12p11 microdeletion syndrome. To investigate the role of WAC in ID, we studied the importance of the Drosophila WAC orthologue (CG8949) in habituation, a non-associative learning paradigm. Neuronal knockdown of Drosophila CG8949 resulted in impaired learning, suggesting that WAC is required in neurons for normal cognitive performance. In conclusion, we defined a clinically recognizable ID syndrome, caused by de novo loss-of-function mutations in WAC. Independent functional evidence in Drosophila further supported the role of WAC in ID. On the basis of our data WAC can be added to the list of ID genes with a role in transcription regulation through histone modification.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Anomalías Craneofaciales/genética , Proteínas de Drosophila/genética , Discapacidad Intelectual/genética , Discapacidades para el Aprendizaje/genética , Mutación , Adolescente , Animales , Proteínas Portadoras/metabolismo , Niño , Preescolar , Anomalías Craneofaciales/diagnóstico , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Habituación Psicofisiológica , Humanos , Discapacidad Intelectual/diagnóstico , Aprendizaje , Discapacidades para el Aprendizaje/diagnóstico , Masculino , Fenotipo , Síndrome , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA