Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; 18(8): e2104142, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34881499

RESUMEN

Metal single atom catalysts (SAC) have been successfully used in heterogeneous catalysis but developing a scalable and economic support for SAC is still a great challenge. Here, cyclized polyacrylonitrile (CPAN) is proposed as a promising support for single atom metal catalysts. CPAN can be easily prepared from cheap industrial product polyacrylonitrile (PAN), which has excellent processability. A series of SAC on CPAN (M/CPAN, M = Ag, Cu, Ru) are designed and the catalytic activities of the as synthesized M/CPAN are investigated by the model reduction reaction of p-nitrophenol (4-NP). M/CPAN presents excellent catalytic performance with high stability and theoretical calculations elucidate that Ag/CPAN synergistically catalyze 4-NP reduction following the Langmuir-Hinshelwood (L-H) mechanism with 4-NP preferentially adsorbing at the Ag sites and H adsorbing at the bridge C sites. These results, for the first time, reveal that the single atom on CPAN can catalyze 4-NP reduction efficiently. This methodology provides a convenient route for the preparation of a variety of SAC, and this strategy is readily scalable and holds great potential in catalytic applications.


Asunto(s)
Resinas Acrílicas , Metales , Catálisis , Dominio Catalítico , Metales/química
2.
J Colloid Interface Sci ; 670: 297-310, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763026

RESUMEN

Fenton/Fenton-like reaction induced chemical dynamic therapy (CDT) has been widely recognized in tumor therapy. Due to the low efficiency of conversion from high-valent metal ions (M(n+1)+) to low-valent ions (Mn+) in the Fenton/Fenton-like catalytic process, enhancing the conversion efficiency safely and effectively would create a great opportunity for the clinical application of CDT. In the study, a universal nanoreactor (NR) consisting of liposome (Lip), tumor cell membrane (CM), and bis(2,4,5-trichloro-6-carboxyphenyl) oxalate (CPPO) is developed to tackle this challenge. The CPPO was first discovered to decompose under weak acidity and H2O2 conditions to generate carboxylic acids (R'COOH) and alcohols (R'OH) with reducibility, which will reduce M(n+1)+ to Mn+ and magnify the effect of CDT. Furthermore, glucose oxidase (GOx) was introduced to decompose glucose in tumor and generate H2O2 and glucose acid, which promote the degradation of CPPO, further strengthening the efficiency of CDT, leading to a butterfly effect. This demonstrated that the butterfly effect triggered by NR and GOx encourages Fenton/Fenton-like reactions of Fe3O4 and MoS2, thereby enhancing the tumor inhibition effect. The strategy of combining GOx and CPPO to strengthen the Fenton/Fenton-like reaction is a universal strategy, which provides a new and interesting perspective for CPPO in the application of CDT, reflecting the exquisite integration of Fenton chemistry and catalytic medicine.


Asunto(s)
Peróxido de Hidrógeno , Peróxido de Hidrógeno/química , Humanos , Hierro/química , Liposomas/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Animales , Propiedades de Superficie , Antineoplásicos/química , Antineoplásicos/farmacología , Oxalatos/química , Ratones , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA