Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Lasers Med Sci ; 35(9): 1981-1988, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32173788

RESUMEN

This study aimed to evaluate the effects of low-energy blue LED irradiation on the osteogenic differentiation of stem cells from the apical papilla (SCAPs). SCAPs were derived from human tooth root tips and were irradiated with 0 (control group), 1 J/cm2, 2 J/cm2, 3 J/cm2, or 4 J/cm2 blue light in osteogenic induction medium. Cell proliferation was analyzed using the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Osteogenic differentiation activity was evaluated by monitoring alkaline phosphatase (ALP), alizarin red staining, and real-time polymerase chain reaction (RT-PCR). The results of the MTT assay indicated that SCAPs in the LED groups exhibited a lower proliferation rate than those in the control group, and there were statistically differences between the 2 J/cm2, 3 J/cm2, and 4 J/cm2 groups and the control group (P < 0.05). The results of the ALP and alizarin red analyses showed that blue LED promoted osteogenic differentiation of the SCAPs. And 4 J/cm2 blue light upregulates the expression levels of the osteogenic/dentinogenic genes ALP, dentin sialophosphoprotein (DSPP), dentin matrix protein-1 (DMP-1), and osteocalcin (OCN) in SCAPs. Our results confirmed that low-energy blue LED at 1 J/cm2, 2 J/cm2, 3 J/cm2, and 4 J/cm2 could inhibit the proliferation of SCAPs and promotes osteogenic differentiation of SCAPs. Further in vitro studies are required to explore the mechanisms of the effects by low-energy blue LED.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Papila Dental/citología , Osteogénesis/efectos de la radiación , Células Madre/citología , Células Madre/efectos de la radiación , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Calcio/metabolismo , Diferenciación Celular/genética , Proliferación Celular/genética , Proliferación Celular/efectos de la radiación , Células Cultivadas , Dentinogénesis/genética , Dentinogénesis/efectos de la radiación , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Humanos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteogénesis/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo
2.
AAPS PharmSciTech ; 21(3): 106, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32185548

RESUMEN

To investigate the effect of polyethylene glycol (PEG) molecular weights on circulation time of PEGylated emulsions and the second injection of injected PEGylated emulsions, we studied the effect of molecular weights on the pharmacokinetic behavior of PEG-DSPE (modified emulsions with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-n-[methoxy (polyethyleneglycol)]) and PEG-CHMC (modified emulsions with poly(ethyleneglycol)-cholesteryl carbonate) emulsions in beagle dogs. The "accelerated blood clearance" (ABC) phenomenon was induced. Through this study, the contribution of PEG molecular weights on the ABC phenomenon was further clarified, and the results provided guidance for lessening or eliminating the ABC phenomenon. We injected different PEG-modified emulsions with 10% PEG-modified density into beagle dogs at 2 µmol phospholipids kg-1 and the blood samples were drawn after 1 min, 3 min, 5 min, 10 min, 15 min, 30 min, 60 min, 120 min, 240 min, 360 min, 600 min, and 24 h. Then, concentrations of the drug were assayed using high-performance liquid chromatography (HPLC). The results showed that the circulation times of PEG-DSPE-modified emulsions were significantly different because of the difference in molecular weights, whereas those of the PEG-CHMC modified emulsions were not. The spatial conformation of PEG with small molecular weights (PEG400, PEG600, and PEG800) was more likely to induce a strong ABC phenomenon. The results of our work suggest the interaction of circulation time and PEG molecular weights on the ABC phenomenon, implying that the spatial conformation of PEG has advantages that alleviate the ABC phenomenon. Importantly, the results have implications for the choice of molecular weights of PEG for PEGylated formulations.


Asunto(s)
Emulsiones , Polietilenglicoles/química , Animales , Perros , Cinética , Liposomas/química , Masculino , Peso Molecular , Fosfatidiletanolaminas/química , Ratas Wistar
3.
Pharm Res ; 36(7): 97, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076925

RESUMEN

PURPOSE: The aim of this research was to design dexamethasone palmitate (DP) loaded sialic acid modified liposomes, with the eventual goal of using peripheral blood neutrophils (PBNs) that carried drug-loaded liposomes to improve the therapeutic capacity for rheumatoid arthritis (RA). METHODS: A sialic acid - cholesterol conjugate (SA-CH) was synthesized and anchored on the surface of liposomal dexamethasone palmitate (DP-SAL). The physicochemical characteristics and in vitro cytotoxicity of liposomes were evaluated. Flow cytometry and confocal laser scanning microscopy were utilized to investigate the accumulation of liposomes in PBNs. The adjuvant-induced arthritis was adopted to investigate the targeting ability and anti-inflammatory effect of DP loaded liposomes. RESULTS: Both DP-CL and DP-SAL existed an average size less than 200 nm with remarkably high encapsulation efficiencies more than 90%. In vitro and in vivo experiments manifested SA-modified liposomes provided a reinforced accumulation of DP in PBNs. As well, DP-SAL displayed a greater degree of accumulation in the joints and a stronger anti-inflammatory effect in terms of RA suppression. CONCLUSIONS: SA-modified liposomal DP was a promising candidate for RA-targeting treatment through the neutrophil-mediated drug delivery system.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Dexametasona/farmacocinética , Liposomas/química , Ácido N-Acetilneuramínico/química , Neutrófilos/metabolismo , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Antiinflamatorios/toxicidad , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Reumatoide/patología , Colesterol/química , Dexametasona/administración & dosificación , Dexametasona/toxicidad , Liberación de Fármacos , Articulaciones/efectos de los fármacos , Articulaciones/patología , Selectina L/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/patología , Masculino , Neutrófilos/patología , Palmitatos/química , Ratas Wistar , Distribución Tisular
4.
AAPS PharmSciTech ; 20(5): 188, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31093777

RESUMEN

Mannose receptor (CD206) and E-selectin are selectively expressed in M2-like tumor-associated macrophages (M2-TAMs) and activated endothelial cells of vessels surrounding tumor tissues. With the knowledge that D-mannose is the natural ligand of mannose receptors and L-fucose is the key calcium chelator for tumor-associated carbohydrate antigens (TACAs) binding to E-selectin, herein, we firstly reported D-mannose polyethylene glycol (PEG) conjugates (Man-PEG) and L-fucose PEG conjugates (Fuc-PEG) co-modified liposomal doxorubicin (DOX-MFPL) to improve tumor-targeting ability. The dual-ligand modified PEGylated liposomes (DOX-MFPL) were assessed by both in vitro and in vivo trials. Compared with the single-ligand D-mannose- or L-fucose-modified liposomes (DOX-MPL or DOX-FPL), DOX-MFPL achieved an increased distribution of DOX in tumor tissues. The antitumor study based on S180 tumor-bearing mice was conducted and the superior tumor inhibitory rate was shown with DOX-MFPL, probably owing to the superior tumor-targeting effect of DOX-MFPL and the modulation of the tumor microenvironment with the exhaustion of TAMs. In general, the dual-ligand drug delivery systems are expected to be promising in the development of specific and efficient methods for tumor treatment.


Asunto(s)
Doxorrubicina/análogos & derivados , Sistemas de Liberación de Medicamentos , Fucosa/química , Manosa/química , Polietilenglicoles/química , Animales , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Humanos , Ligandos , Masculino , Ratones , Polietilenglicoles/administración & dosificación , Células RAW 264.7
5.
Mol Pharm ; 15(9): 3755-3766, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30044914

RESUMEN

The accelerated blood clearance (ABC) phenomenon is an immune response against the first injection of PEGylated colloidal drug delivery systems (CDDSs), which causes the accelerated clearance of the second dose. The enhanced complement-mediated phagocytic activity of Kupffer cells is responsible for accelerated second-dose clearance. Nevertheless, few studies have focused on the role of Kupffer cells in the induction phase of the ABC phenomenon. In this study, the intrinsic phagocytic activity of Kupffer cells was significantly enhanced at 6 days after the initial injected PEGylated emulsions (PEs) using the carbon clearance test and single-pass liver perfusion experiment. Furthermore, PE could stimulate Kupffer cells activation, leading to enhanced cell viability of Kupffer cells and opsonization-independent cellular uptake. It was also found that the response ability of Kupffer cells to the antigen-antibody complexes was augmented by the first injection of PE. Conclusively, we proposed that, besides anti-PEG IgM and complement activation-mediated hepatic uptake, enhanced opsonization-independent phagocytosis of Kupffer cells and the high response ability to opsonized antigen-antibody complexes contribute to the accelerated clearance of the second administration. The results indicated that Kupffer cells play an indispensable role in the ABC phenomenon and provided novel insights into the current view on the mechanism of the ABC effect.


Asunto(s)
Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/farmacología , Fagocitosis/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Emulsiones , Inmunoglobulina M/metabolismo , Macrófagos del Hígado/citología , Macrófagos del Hígado/efectos de los fármacos , Masculino , Polietilenglicoles/química , Ratas , Ratas Wistar
6.
Mol Pharm ; 15(7): 2548-2558, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29768009

RESUMEN

The "accelerated blood clearance (ABC) phenomenon" is known to be involved in the adaptive immune system. Regretfully, the relationship between the ABC phenomenon and innate immune system, especially with respect to Kupffer cells (KCs) has been largely unexplored. In this study, the contribution of KCs to ABC was examined using the 4-aminophenyl-α-d-mannopyranoside (APM) lipid derivative DSPE-PEG2000-APM (DPM) and the 4-aminophenyl-ß-l-fucopyranoside (APF) lipid derivative DSPE-PEG2000-APF (DPF) as ligands for mannose/fucose receptors on KCs, which were synthesized and modified on the surface of liposomes. The results of cellular liposome uptake in vitro and biodistribution in vivo indicated that DPM and DPF comodified liposomes (MFPL5-5) present the strongest capability of KC-targeting among all preparations tested. In rats pretreated with MFPL5-5 instead of PEGylated liposomes (PL), the ABC phenomenon was significantly enhanced and the distribution of liposomes in the liver was increased. Cellular uptake of the second injection of PL in vivo demonstrated that KCs was responsible for the uptake. Furthermore, compared to pretreatment with PL, the uptake of second injection of PL was more enhanced when pretreated with MFPL5-5. These findings suggest that KCs, which are considered traditional members of the innate immune system, play a crucial role in the ABC phenomenon and act as a supplement to the phenomenon.


Asunto(s)
Inmunidad Adaptativa , Macrófagos del Hígado/metabolismo , Lectinas Tipo C/metabolismo , Hígado/metabolismo , Lectinas de Unión a Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , Compuestos de Anilina/química , Compuestos de Anilina/farmacocinética , Animales , Línea Celular , Macrófagos del Hígado/inmunología , Ligandos , Liposomas , Hígado/citología , Hígado/inmunología , Masculino , Receptor de Manosa , Manósidos/química , Manósidos/farmacocinética , Tasa de Depuración Metabólica/inmunología , Modelos Animales , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/farmacocinética , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Ratas , Ratas Wistar , Distribución Tisular
7.
Mol Pharm ; 15(12): 5534-5545, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30392377

RESUMEN

With increasing application of PEGylated products, drawbacks are beginning to emerge such as the "PEG dilemma". Other promising materials may need to be found in the current situation. Endogenous polysialic acid (PSA), which is highly expressed on mammalian, bacterial, and malignant surface, may be a promising material in oncology. In this study, a dual-responsive amphiphilic PSA cholesterol derivative (PSA-CS-CH) was synthesized to explore the opportunity of PSA in targeted drug delivery systems. PSA-CS-CH, F127 mixed micelles (PF-M), and pure F127 micelles (F-M) were prepared for comparative antitumor experiments. The in vitro experiments showed that modification of PSA-CS-CH significantly increased cytotoxicity and cellular uptake. PF-M had excellent tumor microenvironment response release behavior on acidic media with high GSH levels. The in vivo fluorescence imaging and antitumor experiments showed that PF-M had excellent tumor targeting ability and great tumor suppression ability. In summary, biodegradable PSA may contribute to cancer therapy.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Neoplasias/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/farmacocinética , Línea Celular Tumoral/trasplante , Colesterol/química , Modelos Animales de Enfermedad , Doxorrubicina/farmacocinética , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Estabilidad de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Microscopía Intravital , Masculino , Ratones , Micelas , Microscopía Fluorescente , Neoplasias/diagnóstico por imagen , Neoplasias/patología , Oxidación-Reducción , Polietilenos/química , Polipropilenos/química , Ratas , Ratas Wistar , Ácidos Siálicos/química
8.
Drug Dev Ind Pharm ; 43(11): 1827-1835, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28678638

RESUMEN

In our previous study, polysialic acid-octadecyl dimethyl betaine (PSA-BS18) was synthesized and modified to liposomal EPI. Preliminary experiments revealed that the PSA-BS18 was a potential material for targeting tumor site with superior curative effects. In this study, PSA-BS18 and Pluronic F127 (F127) mixed polymeric micelles encapsulated docetaxel (DTX) (FP/DTX) were prepared by a self-assembly method. The FP/DTX was found to have a diameter of 34.83 ± 0.50 nm with a narrow polydispersity, the entrapment efficiency was 99.12 ± 1.17%, and the drug loading efficiency of 1.40 ± 0.01%. The storage and dilution stability of FP/DTX was fine. In vitro release studies demonstrated that FP/DTX had delayed the drug release from the micelles. In vitro cytotoxicity assay on B16 cells presented that FP/DTX led to a stronger cytotoxic activity in comparison to F127 micelles based DTX (F127/DTX) and Tween80-based DTX (Taxotere®). The in vivo imaging study showed that the accumulation of FP/DTX at tumor sites was more than F127/DTX. The in vivo antitumor activity of FP/DTX against B16 tumor xenograft model showed a significant higher inhibition and a lower toxicity compared with F127/DTX and Taxotere®. Taken together, the results obtained above showed that PSA-BS18 and F127 mixed polymeric micelles may be a promising strategy for antitumor delivery of DTX.


Asunto(s)
Antineoplásicos/farmacología , Poloxámero/química , Polietilenglicoles/química , Ácidos Siálicos/química , Antineoplásicos/química , Docetaxel , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Liposomas , Micelas , Taxoides
9.
Yao Xue Xue Bao ; 51(2): 316-24, 2016 Feb.
Artículo en Zh | MEDLINE | ID: mdl-29856587

RESUMEN

A large number of experimental and clinical data indicates that tumor-associated macrophages(TAMs) were involved in the whole process of tumor growth, invasion and metastasis. Like macrophages in other tissues, TAMs originate from blood monocytes, which are recruited to the tumor tissues by cytokines and then differentiated into TAMs. It is interesting that the monocytes overexpress siglec receptor in their surface, which has a high binding specificity to sialic acid(SA). From this point of view, we hypothesize that if SA was used as a ligand in the surfaces of drug delivery systems, SA would enhance the targeting efficiency to monocytes, and thus to achieve a higher specificity to TAMs. In our previous study, an SA derivative of SA-octadecylamine(SA-18) was synthesized and was found to enhance cytotoxicity on TAMs in vitro. The chain length is a critical factor for SA efficiency in liposomes and it has a significant influence on the TAM targeting effects of the carriers. So in this study, four kinds of different chain length of SA fatty amine derivatives were synthesized, including SA-18, SA-hexadecylamine(SA-16), SA-tetradecylamine(SA-14) and SA-dodecylamine(SA-12), and were modified on the surfaces of blank liposomes(BLK-Sn L, n = 18, 16, 14, 12) and pixantrone maleate-loaded liposomes(Pix-Sn L, n = 18, 16, 14, 12). TAM targeting effects of these SA derivatives were evaluated by acute toxicity and antitumor efficacy in vivo. The results of acute toxicity experiments showed that the toxicities of the SA derivatives deceased gradually with the reduction in the length of lipophilic chain. The in vivo antitumor efficacies of SA-modified blank liposomes showed that these blank formulations had no effect on the tumor inhibition except BLK-S14L(61.4% ± 18.8%), and BLK-S16 L even promoted the tumor growth(-31.7% ± 13.1%, the 18 th day). The in vivo antitumor efficacies of SA-modified Pix liposomes showed that the tumor inhibition effects were Pix-S18L(97.4% ± 2.1%) > Pix-S14L(73.1% ±21.1%) > Pix-S12L(53.9% ± 17.8%) > Pix-S16L(32.9%). Because of the relatively strong binding ability of SA-18, it was hard to fall off from the liposomes in the transport process, leading to a good TAM targeting ability and less toxicity to the normal tissues. Meanwhile, 50% of the mice in Pix-S18 L group showed "tumor shedding" and "wound healing" phenomena without recurrence in two months following the treatment. Therefore, SA-18 is the most potential TAM targeting material among these SA fatty amine derivatives.


Asunto(s)
Sistemas de Liberación de Medicamentos , Liposomas , Macrófagos/efectos de los fármacos , Ácido N-Acetilneuramínico/química , Neoplasias/tratamiento farmacológico , Aminas , Animales , Línea Celular Tumoral , Composición de Medicamentos , Humanos , Hidrocarburos , Ratones
10.
Food Chem ; 416: 135776, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889015

RESUMEN

α-Tocopherol, as an oil-soluble vitamin with strong antioxidant activity. It is the most naturally abundant and biologically active form of vitamin E in humans. In this study, a novel emulsifier (PG20-VES) was synthesized by attaching hydrophilic twenty-polyglycerol (PG20) to hydrophobic vitamin E succinate (VES). This emulsifier was shown to have a relatively low critical micelle concentration (CMC = 3.2 µg/mL). The antioxidant activities and emulsification properties of PG20-VES were compared with those of a widely used commercial emulsifier: D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS). PG20-VES exhibited a lower interfacial tension, stronger emulsifying capacity and similar antioxidant property to TPGS. An in vitro digestion study showed that lipid droplets coated by PG20-VES were digested under simulated small intestine conditions. This study showed that PG20-VES is an efficient antioxidant emulsifier, which may have applications in the formulation of bioactive delivery systems in the food, supplement, and pharmaceutical industries.


Asunto(s)
Antioxidantes , alfa-Tocoferol , Humanos , Antioxidantes/química , alfa-Tocoferol/química , Emulsiones , Vitamina E/química , Polímeros , Polietilenglicoles/química , Emulsionantes/química
11.
Front Cell Dev Biol ; 11: 1209817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457289

RESUMEN

Mineralized tissues, such as teeth and bones, pose significant challenges for repair due to their hardness, low permeability, and limited blood flow compared to soft tissues. Bone morphogenetic proteins (BMPs) have been identified as playing a crucial role in mineralized tissue formation and repair. However, the application of large amounts of exogenous BMPs may cause side effects such as inflammation. Therefore, it is necessary to identify a more precise molecular target downstream of the ligands. Activin receptor-like kinase 3 (ALK3), a key transmembrane receptor, serves as a vital gateway for the transmission of BMP signals, triggering cellular responses. Recent research has yielded new insights into the regulatory roles of ALK3 in mineralized tissues. Experimental knockout or mutation of ALK3 has been shown to result in skeletal dysmorphisms and failure of tooth formation, eruption, and orthodontic tooth movement. This review summarizes the roles of ALK3 in mineralized tissue regulation and elucidates how ALK3-mediated signaling influences the physiology and pathology of teeth and bones. Additionally, this review provides a reference for recommended basic research and potential future treatment strategies for the repair and regeneration of mineralized tissues.

12.
Enzyme Microb Technol ; 160: 110098, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35863188

RESUMEN

Penicillium oxalicum can secrete numerous of plant biomass-degrading enzymes, but limited information is available regarding the mechanisms associated with their secretion. In the Golgi-to-vacuole pathway, the type I transmembrane receptor Vps10p is involved in the sorting of the soluble vacuolar proteins and can also target recombinant and aberrant proteins from the Golgi to the vacuole for degradation. Here, we used the combination of phenotypic characterization and comparative secretome analysis to explore the effect of disruption of the vps10 gene in P. oxalicum (Poxvps10) on endogenous cellulolytic enzyme secretion. The study found that PoxVps10p is required for the targeting and delivery of vacuolar PoxCpyA to the vacuole in P. oxalicum. Poxvps10p deletion enhances extracellular protein and cellulase production by P. oxalicum when the cells are grown on a cellulosic substrate (wheat bran and Avicel). Furthermore, secretome analysis revealed higher relative amount of cellulases, lytic polysaccharide monooxygenase and post-translational modification-related proteins in the ΔPoxvps10 mutant than in the wild-type (WT) strain, which may explain the higher cellulase production by the ΔPoxvps10 than the WT strain. This study thus provides a new target for manipulating the secretory pathway to enhance the cellulolytic enzyme production.


Asunto(s)
Celulasa , Penicillium , Celulasa/metabolismo , Celulosa/metabolismo , Transporte de Proteínas
13.
J Control Release ; 343: 657-671, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954252

RESUMEN

The accelerated blood clearance (ABC) phenomenon describes a dilemma of polyethylene glycol (PEG) applied in drug delivery system (DDS) caused by its immunogenicity, that results in the enhanced blood clearance rate and increased hepatic and splenic accumulation after secondary injection of PEGylated nanocarriers. However, the ABC index, as the judgement of ABC phenomenon, only describes the accelerated blood clearance rate, but ignores the enhanced hepatic and splenic accumulation. Therefore, we proposed the hepatic accumulation (HA) index and the splenic accumulation (SA) index as supplements for assessing the ABC phenomenon, to emphasize the contribution of liver and spleen, especially the liver, possessing the most population of tissue resident macrophages. By altering the first injection site from the tail vein to the liver portal vein, there was no impact on anti-PEG IgM production, and the secondary hepatic accumulation of PEGylated nanoemulsions (PE) was observed to be proportionate to the first PE stimulation strength on the liver. We also determined that Kupffer cells (KCs) were the main contributor to this enhancement. On this basis, we revealed a definite phenomenon that PE could induce innate immune memory in KCs, by enhancing the phagocytosis of KCs toward PE during the secondary stimulation. The PE-stimulated KCs could carry this memory to the naïve rats through adoptive transfer, resulting in increased hepatic accumulation in the recipient rats without antibody production. Studies examining the phagocytosis of KCs in vivo, ex vivo and in vitro revealed that the memory of KCs against PE triggered by first-stimulated PE could be maintained independently of other cells or components until 21 days after the first stimulation, and possessing specificity to PEG, which was invalid to long-circulating GE (GM1 modified nanoemulsions). The discovery of immune memory in KCs induced by PE highlights the importance of focusing on the relationship between the innate immune system and PEGylated nanocarriers during the development of DDS to improve medication safety in the clinic.


Asunto(s)
Macrófagos del Hígado , Liposomas , Animales , Inmunoglobulina M , Memoria Inmunológica , Polietilenglicoles , Ratas
14.
J Control Release ; 337: 393-406, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34171446

RESUMEN

Immune checkpoint blockade (ICB) treatment is promising for the clinical therapy of numerous malignancies. However, most cancer patients rarely benefit from such single-agent immunotherapies because of the complexity of both the tumor and tumor microenvironment. A tumor-specific liposomal vehicle (DOX-SAL) modified with a sialic acid-cholesterol conjugate (SA-CH) and remotely loaded with doxorubicin (DOX) is herein reported for improving chemoimmunotherapy. The intravenous administration of DOX-SAL dramatically downregulates tumor-associated macrophage (TAM)-mediated immunosuppression, inhibits immunoregulatory functions, and promotes intratumoral infiltration of CD8+ T cells. Compared to conventional liposomes, DOX-SAL-mediated combination therapy with a PD-1-blocking monoclonal antibody (aPD-1 mAb) almost completely eliminates B16F10 tumors and efficiently inhibits 4T1 tumors. Moreover, cancer stem cells exhibit efficient tumor-initiating, tumor-propagating, and immunosuppressive tumor microenvironment-shaping capabilities. To further improve the treatment efficacy of an immunologically "cold" tumor, metformin (MET), which selectively eradicates breast cancer tumor stem cells, is co-encapsulated with DOX into liposomes to develop DOX/MET-SAL. The combination therapy with DOX/MET-SAL and aPD-1 mAb in a 4T1 orthotopic mouse model indicates their synergetic benefit on primary tumor inhibition, metastasis suppression, and survival rate improvement. Thus, the multifunctional liposomal platform has potential value for ICB combination immunotherapy.


Asunto(s)
Neoplasias de la Mama , Liposomas , Animales , Neoplasias de la Mama/tratamiento farmacológico , Linfocitos T CD8-positivos , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico , Liposomas/uso terapéutico , Ratones , Ácido N-Acetilneuramínico , Microambiente Tumoral
15.
Acta Biomater ; 134: 702-715, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34339869

RESUMEN

Neutrophils and monocytes (N/Ms) are potential candidates for the delivery of therapeutic agents to the tumor microenvironment (TME) because of their tumor-accumulating nature. L-selectin and Siglec-1, receptors for sialic acid (SA), are highly expressed in circulating neutrophils and monocytes, respectively, in tumor-bearing mice, and N/Ms are recruited to tumors in response to inflammatory cytokines secreted by the TME, promoting tumor growth and invasion. Therefore, we constructed a drug delivery nano-platform using N/Ms as vehicles. SA-stearic acid conjugate was synthesized and utilized to modify epirubicin-loaded liposomes (EPI-SL) for enhanced endocytosis of liposomes by circulating N/Ms. Cellular uptake studies showed that SA modification improved the accumulation of EPI in N/Ms and did not alter the inherent chemotaxis of N/Ms. In tumor-bearing mice, EPI-SL significantly improved the tumor-targeting efficiency and therapeutic efficacy of EPI compared to other preparations and even eradicated tumors because of the tumor-accumulating and inhibitory effects of N/Ms containing EPI-SL. Our research showed, for the first time, that as an N/M-based drug delivery platform, EPI-SL remedied the limited tumor targeting in the conventional EPR effect-based treatment strategy, contributing to the exploitation of a new drug delivery platform for cancer treatment. STATEMENT OF SIGNIFICANCE: Tumor-associated neutrophils (TANs) and macrophages (TAMs) are closely associated with tumor growth and invasion, and therefore the development of therapeutic strategies targeting TANs and TAMs is crucial for tumor treatment. Given that most TANs and TAMs are derived from peripheral blood neutrophils and monocytes (N/Ms), respectively, we synthesized sialic acid-stearic acid conjugates that specifically bind N/Ms for the surface modification of liposomal epirubicin (EPI-SL). The N/Ms loaded with EPI-SL maintained their inherent chemotaxis toward the tumor. Additionally, EPI-SL significantly improved the survival of tumor-bearing mice and even eradicated tumors. These findings suggested that EPI-SL has substantial potential for clinical application by compensating for the previous low efficacy of ex vivo transformed cell infusion and improving the tumor-targeting efficiency.


Asunto(s)
Liposomas , Ácido N-Acetilneuramínico , Animales , Línea Celular Tumoral , Epirrubicina/farmacología , Ratones , Monocitos , Neutrófilos
16.
Inflammation ; 43(3): 953-961, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31938979

RESUMEN

The skewed T helper (Th) 2 response plays a critical role in the pathogenesis of allergic asthma. Regulatory T (Treg) cells and the regulatory cytokines are required in maintaining the homeostasis in the body. This study aims to determine the effects of a poly(lactic-co-glycolic) acid (PLGA)-ovalbumin (OVA)+A20 (a ubiquitin E3 ligase) nanovaccine on inhibiting allergic asthma in a murine model. In this study, A20 and OVA (a model antigen) were encapsulated into PLGA to be a nanovaccine (PLGA-OVA+A20). An allergic asthma murine model was developed with OVA as the specific antigen to test the role of PLGA-OVA+A20 nanovaccine in maintaining the immune homeostasis in the airway tissues. The results showed that PLGA-OVA+A20 nanovaccine inhibited the asthma responses in mice by suppressing Th2 inflammatory responses, promoting the generation of Treg cells in the airway tissues. We conclude that the PLGA-OVA+A20 nanovaccine has a marked inhibitory effect on the airway allergic response in sensitized mice by significantly promoting the generation of Treg cell and IL-10. The data suggest that PLGA-OVA+A20 has translational potential in the treatment of allergic asthma.


Asunto(s)
Asma/prevención & control , Modelos Animales de Enfermedad , Nanopartículas/administración & dosificación , Ovalbúmina/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/administración & dosificación , Animales , Asma/inmunología , Asma/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Ratones , Ratones Endogámicos BALB C , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
17.
ACS Biomater Sci Eng ; 6(6): 3361-3374, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33463181

RESUMEN

Multifunctional nanoparticles for imaging and treatment in cancer are getting more and more attention recently. Herein, halloysite nanotubes (HNTs), natural clay nanotubes, are designed as multifunctional nanoplatform for targeted delivering photothermal therapy agents and chemotherapeutic drugs. Fe3O4 was anchored on the outer surfaces of HNTs and then doxorubicin (DOX) was loaded on the nanotubes. Afterward, a layer of polypyrrole (PPy), as photothermal agent, was wrapped on the tubes. The nanoplatform of HNT@Fe3O4@PPy@DOX can be guided to tumor tissue by an external magnetic field, and then performs chemo-photothermal combined therapy by 808 nm laser irradiation. HNT@Fe3O4@PPy@DOX shows the ability of T2-weighted magnetic resonance imaging, which could be considered as a promising application in magnetic targeting tumor therapy. In vitro and in vivo experiments demonstrate that HNTs nanoplatform has good biocompatibility and produces a strong antitumor effect trigged by near-infrared laser irradiation. The novel chemo-photothermal therapy nanoplatform based on HNTs may be developed as a multifunctional nanoparticle for imaging and therapy in breast cancer.


Asunto(s)
Neoplasias de la Mama , Hipertermia Inducida , Neoplasias de la Mama/diagnóstico por imagen , Doxorrubicina , Humanos , Imagen por Resonancia Magnética , Polímeros , Pirroles
18.
Biomater Sci ; 8(8): 2189-2201, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32096498

RESUMEN

Neutrophils are the most abundant white blood cells in humans. Many tumor-treatment methods that are related to tissue infiltration and the activation of neutrophils have been developed. In particular, one strategy, which aims to improve tumor treatment, involves the exploitation or targeting of activated neutrophils. Peripheral blood neutrophils (PBNs) from tumor-bearing mice display high expression of l-selectin, which is well known to be targeted by the sialic acid (SA) ligand. Hence, in this research, we developed a drug delivery platform involving liposomes modified with an SA conjugate that targets activated PBNs. The uptake of doxorubicin (DOX)-loaded liposomes by PBNs did not alter their activation and transmigration. Furthermore, in tumor-bearing mice, SA-modified liposomes displayed a greater tumor-targeting ability and stronger tumor treatment efficacy, which were mediated by the neutrophil infiltration induced by inflammatory factors released from the tumor microenvironment. In conclusion, SA-modified liposomal DOX was shown to be an effective neutrophil-mediated drug delivery system for tumor therapy.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/análogos & derivados , Sistemas de Liberación de Medicamentos , Ácido N-Acetilneuramínico/administración & dosificación , Neoplasias/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Interleucina-6/sangre , Liposomas , Masculino , Ratones , Ácido N-Acetilneuramínico/química , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Polietilenglicoles/administración & dosificación , Factor de Necrosis Tumoral alfa/sangre
19.
Int J Pharm ; 558: 187-200, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30654062

RESUMEN

To overstep the dilemma of chemical drug degradation within powerful lysosomes of tumor associated macrophages (TAMs), a sialic acid-polyethylenimine-cholesterol (SA-PEI-CH) modified liposomal doxorubicin (DOX-SPCL) was designed with both TAMs targeting and smart lysosomal trafficking. The modified liposome DOX-SPCL performed particle size as 103.2 ±â€¯3.1 nm and zeta potential as -4.5 ±â€¯0.9 mV with encapsulation efficiency as 95.8 ±â€¯0.5%. In in vitro cell experiments, compared with conventional liposomal doxorubicin (DOX-CL) and PEGylated liposomal doxorubicin (DOX-PL), DOX-SPCL showed a selective binding on TAMs and a mere lysosomal concentration. In pharmacokinetic study, DOX-SPCL effectively impeded/delayed the disposition of mononuclear phagocyte system (MPS) with a value of AUC0-t as 796.03 ±â€¯66.93 mg L-1 h. In S180 sarcomas bearing mice, DOX-SPCL showed the greatest tumor inhibition rate (92.7% ±â€¯3.6%) compared with DOX-CL (46.4% ±â€¯2.0%) or DOX-PL (58.8% ±â€¯7.6%). The <0.5% positive region of TAMs in tumor section indicated a super TAMs exhaustion for DOX-SPCL treatment. Conclusively, DOX-SPCL was supposed as a safe and effective liposomal preparation for clinical sarcoma treatment via TAMs targeting/deletion delivery strategy.


Asunto(s)
Colesterol/administración & dosificación , Doxorrubicina/análogos & derivados , Ácido N-Acetilneuramínico/administración & dosificación , Polietileneimina/administración & dosificación , Sarcoma/tratamiento farmacológico , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colesterol/química , Colesterol/farmacocinética , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacocinética , Liberación de Fármacos , Macrófagos , Masculino , Ratones , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/farmacocinética , Neoplasias , Polietilenglicoles/administración & dosificación , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Polietileneimina/química , Polietileneimina/farmacocinética , Ratas Wistar
20.
Biomaterials ; 217: 119326, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31288173

RESUMEN

Spinal cord injury (SCI) leads to immediate disruption of neuronal membranes and loss of neurons, followed by extensive secondary injury process. Treatment of SCI still remains a tremendous challenge clinically. Minocycline could target comprehensive secondary injury via anti-inflammatory, anti-oxidant and anti-apoptotic mechanisms. Polyethylene glycol (PEG), a known sealing agent, is able to seal the damaged cell membranes and reduce calcium influx, thereby exerting neuroprotective capacity. Here, an E-selectin-targeting sialic acid - polyethylene glycol - poly (lactic-co-glycolic acid) (SAPP) copolymer was designed for delivering hydrophobic minocycline to achieve combinational therapy of SCI. The obtained SAPP copolymer could self-assemble into micelles with critical micelle concentration being of 13.40 µg/mL, and effectively encapsulate hydrophobic minocycline. The prepared drug-loaded micelles (SAPPM) displayed sustained drug release over 72 h, which could stop microglia activation and exhibited excellent neuroprotective capacity in vitro. The SAPP micelles were efficiently accumulated in the lesion site of SCI rats via the specific binding between sialic acid and E-selectin. Due to the targeting distribution and combinational effect between PEG and minocycline, SAPPM could obviously reduce the area of lesion cavity, and realize more survival of axons and myelin sheaths from the injury, thus distinctly improving hindlimb functional recovery of SCI rats and conferring superior therapeutic effect in coparison with other groups. Our work presented an effective and safe strategy for SCI targeting therapy. Besides, neuroprotective capacity of PEG deserves further investigation on other central nervous system diseases.


Asunto(s)
Micelas , Ácido N-Acetilneuramínico/química , Polietilenglicoles/química , Traumatismos de la Médula Espinal/terapia , Animales , Terapia Combinada , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones , Microglía/efectos de los fármacos , Microglía/patología , Minociclina/farmacología , Minociclina/uso terapéutico , Vaina de Mielina/efectos de los fármacos , Vaina de Mielina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Ratas Sprague-Dawley , Médula Espinal/patología , Médula Espinal/ultraestructura , Traumatismos de la Médula Espinal/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA