Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bull Environ Contam Toxicol ; 110(3): 58, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36802282

RESUMEN

It is essential to understand the occurrence from and plant bioavailability of soil microplastics to heavy metals in soils to assess their environmental fate and risk. The purpose of this study was to evaluate the effect of different microplastic concentrations on the bioavailability of copper and zinc in soil. The relationship between the availability of heavy metals in soil assessed by chemical methods (soil fractionation) and the bioavailability of copper and zinc assessed by biological methods (accumulation in maize and cucumber leaves) in relation to the concentration of microplastics. The results showed that copper and zinc in soil shifted from stable to effective fraction with increasing polystyrene concentrations, which would increase the toxicity and bioavailability of heavy metals. When the concentration of polystyrene microplastics increased, copper and zinc accumulation in plants increased, chlorophyll a and chlorophyll b decreased, and malondialdehyde increased. It is shown that the addition of polystyrene microplastics promoted the toxicity of copper and zinc and inhibited plant growth.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cobre/toxicidad , Cobre/análisis , Zinc/toxicidad , Zinc/análisis , Microplásticos , Plásticos , Suelo , Aguas del Alcantarillado , Disponibilidad Biológica , Clorofila A , Poliestirenos/toxicidad , Metales Pesados/toxicidad , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
2.
Dent Mater ; 40(9): 1378-1389, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38902144

RESUMEN

OBJECTIVES: The purpose of this study was evaluating the performance of new Bis-EFMA based bulk-fill composites with common methacrylate based composites and commercial dental composites. METHODS: The Bis-EFMA monomer was synthesized and the novel Bis-EFMA based bulk-fill composites were prepared. The resin composite samples were co-cultured with human gingival epithelial cells and human dental pulp stem cells to test the biocompatibility. The edge adaptation was observed under a combination of stereoscope and scanning electron microscope. The internal hardness was measured using a Vickers microhardness tester after one-time filling of cavities prepared in extracted teeth. After friction and wear test on the surface of the resin composites, the surface morphology and volume wear of each group were measured by the optical profilometer. The color stability was measured by a colorimeter. RESULTS: Direct contact with human gingival epithelial cells and human dental pulp stem cells did not cause significant changes in their growth density and morphology, indicating good biocompatibility of Bis-EFMA group (p > 0.05). The continuous margin proportion of the Bis-EFMA group was as good as commercial bulk-fill composites (p > 0.05). The sectional microhardness results showed that the Bis-EFMA group had the highest microhardness. After the friction and wear test, the volume wear of the Bis-EFMA group was minimal, indicating its good wear resistance and mechanical strength. Color changes in all resin groups after 28 days of immersion were within the clinically acceptable range. SIGNIFICANCE: The addition of Bis-EFMA demonstrated excellent biocompatibility, edge adaptation and color stability comparable to commonly used clinical bulk-fill composites, along with preferable mechanical strength, friction and wear resistance. Bis-EFMA based bulk-fill composites have the potential to be employed as a bulk filling material in commercial dental composite applications.


Asunto(s)
Resinas Compuestas , Ensayo de Materiales , Propiedades de Superficie , Resinas Compuestas/química , Humanos , Dureza , Pulpa Dental/citología , Microscopía Electrónica de Rastreo , Encía/citología , Metacrilatos/química , Células Madre/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Materiales Biocompatibles/química , Color , Adaptación Marginal Dental
3.
J Hazard Mater ; 474: 134740, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38805821

RESUMEN

Construction of air filter membranes bearing prominent collecting and transferring capability is highly desirable for detecting airborne pathogens but remains challenging. Here, a hyaluronic acid air filter membrane (HAFM) with tunable heterogeneous micro-nano porous structures is straightforwardly constructed through the ethanol-induced phase separation strategy. Airborne pathogens can be trapped and collected by HAFM with high performance due to the ideal trade-off between removal efficiency and pressure drop. By exempting the sample elution and extraction processes, the HAFM after filtration sampling can not only directly disperse on the agar plate for colony culture but also turn to an aqueous solution for centrifugal enrichment, which significantly reduces the damage and losses of the captured microorganisms. The following combination with ATP bioluminescence endows the HAFM with a real-time quantitative detection function for the captured airborne pathogens. Benefiting from high-efficiency sampling and non-traumatic transfer of airborne pathogens, the real-world bioaerosol concentration can be facilely evaluated by the HAFM-based ATP assay. This work thus not only provides a feasible strategy to fabricate air filter membranes for efficient microbial collection and enrichment but also sheds light on designing advanced protocols for real-time detection of bioaerosols in the field.


Asunto(s)
Filtros de Aire , Microbiología del Aire , Membranas Artificiales , Filtros de Aire/microbiología , Filtración/instrumentación , Aerosoles/análisis , Monitoreo del Ambiente/métodos , Adenosina Trifosfato/análisis , Bacterias/aislamiento & purificación
4.
Biomater Sci ; 11(10): 3669-3682, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37021925

RESUMEN

This study synthesized and characterized different proportions of nonestrogenic di(meth)acrylate 9,9-bis[4-((2-(2-methacryloyloxy)ethyl-carbamate)ethoxy)phenyl] fluorine (Bis-EFMA)-based resin composite systems to study their physical, chemical, optical and biological characteristics, and adhesive properties after bonding to a tooth. The estrogenic activity of raw materials was evaluated and compared with estrogen and commercial bisphenol A. After photopolymerization, all resin composite systems were prepared, and their properties were systematically investigated. Notably, the nonestrogenic di(meth)acrylate Bis-EFMA exhibited a more suitable refractive index, excellent biocompatibility, low marginal microleakage and improved bonding strength. Except for the pure UDMA and Bis-EFMA groups, the depth of cure and Vickers microhardness ratios of all the other groups met the requirements of bulk filling (one-time curing depth of more than 4 mm). Bis-EFMA resin systems exhibited lower volumetric polymerization shrinkage (about 3-5%), higher curing depth (>6 mm in specific proportions), mechanical properties (flexural strength of 120-130 MPa, etc.), and microtensile bonding strength (>27.8 MPa), which were comparable or superior to Bis-GMA or commercial composites. Herein, we believe that the novel nonestrogenic di(meth)acrylate (Bis-EFMA) has a wide application prospect as an alternative to Bis-GMA.


Asunto(s)
Polietilenglicoles , Ácidos Polimetacrílicos , Bisfenol A Glicidil Metacrilato/química , Ácidos Polimetacrílicos/química , Ensayo de Materiales , Polietilenglicoles/química , Resinas Compuestas/química , Metacrilatos/química
5.
Jpn Dent Sci Rev ; 59: 181-190, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37388714

RESUMEN

Biomineralization is a highly regulated process that results in the deposition of minerals in a precise manner, ultimately producing skeletal and dental hard tissues. Recent studies have highlighted the crucial role played by intracellular processes in initiating biomineralization. These processes involve various organelles, such as the endoplasmic reticulum(ER), mitochondria, and lysosomes, in the formation, accumulation, maturation, and secretion of calcium phosphate (CaP) particles. Particularly, the recent in-depth study of the dynamic process of the formation of amorphous calcium phosphate(ACP) precursors among organelles has made great progress in the development of the integrity of the biomineralization chain. However, the precise mechanisms underlying these intracellular processes remain unclear, and they cannot be fully integrated with the extracellular mineralization mechanism and the physicochemical structure development of the mineralization particles. In this review, we aim to focus on the recent progress made in understanding intracellular mineralization organelles' processes and their relationship with the physicochemical structure development of CaP and extracellular deposition of CaP particles.

6.
J Mech Behav Biomed Mater ; 134: 105372, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926342

RESUMEN

With the aim to prepare Bis-GMA-free bulk-filled dental resin composite (DRC), Bis-GMA-free resin matrix was prepared by mixing Bis-EFMA with TEGDMA at two mass ratios (Bis-EFMA/TEGDMA = 50 wt/50 wt and 60 wt/40 wt), and the bulk-filled resin composites were then obtained by mixing resin matrix with silanated glass fillers at a mass ratio of 30 wt/70 wt. Bis-GMA based resin composites were used as control. Refractive indexes of resin matrixes were measured. Besides the depth of cure mentioned in ISO standard, double bond conversion (DC) and bottom/top Vickers hardness (VHN) ratio of resin composites were investigated to evaluate the curing depth. Physicochemical properties, such as flexural properties, volumetric shrinkage (VS), shrinkage stress (SS), water sorption (WS) and solubility (SL), and cytotoxicity of resin composites were tested and statistically analyzed (ANOVA, Tukey's, p = 0.05). The results showed that Bis-EFMA/TEGDMA resin matrixes had higher refractive indexes than Bis-GMA/TEGDMA resin matrixes. Viscosities of Bis-EFMA based DRCs were higher than Bis-GMA based DRCs. Bis-EFMA-based (50/50) DRC had comparable depth of cure, DC, and VHN as Bis-GMA-based (50/50) DRC (p > 0.05). Though Bis-EFMA/TEGDMA (60/40) had the highest refractive index in all resin matrix, the corresponding DRCs had the lowest depth of cure, DC, and bottom/top VHN ratio in all groups (p < 0.05). Replacing Bis-GMA with Bis-EFMA had no negative effect on flexural properties, WS and SL of DRCs, and could reduce VS and SS of DRCs. Results of CCK8 assay showed that all of DRCs had the same cytotoxicity (p > 0.05), and the thickness of sample had no influence on the cytotoxicity (p > 0.05). All the results indicated that Bis-EFMA could be used to replace Bis-GMA to prepare bulk-filled dental resin composites. According to the results of depth of cure, DC, and bottom/top VHN ratio, 50 wt/50 wt was more appropriate than 60 wt/40 wt as the mass ratio of Bis-EFMA and TEGDMA in the resin matrix for bulk-filled dental resin composites.


Asunto(s)
Metacrilatos , Refractometría , Bisfenol A Glicidil Metacrilato/química , Resinas Compuestas/química , Ensayo de Materiales , Metacrilatos/química , Polietilenglicoles/química , Ácidos Polimetacrílicos/química , Agua/química
7.
Biofabrication ; 14(1)2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34798629

RESUMEN

Digital light processing (DLP)-based three-dimensional (3D) printing technology has the advantages of speed and precision comparing with other 3D printing technologies like extrusion-based 3D printing. Therefore, it is a promising biomaterial fabrication technique for tissue engineering and regenerative medicine. When printing cell-laden biomaterials, one challenge of DLP-based bioprinting is the light scattering effect of the cells in the bioink, and therefore induce unpredictable effects on the photopolymerization process. In consequence, the DLP-based bioprinting requires extra trial-and-error efforts for parameters optimization for each specific printable structure to compensate the scattering effects induced by cells, which is often difficult and time-consuming for a machine operator. Such trial-and-error style optimization for each different structure is also very wasteful for those expensive biomaterials and cell lines. Here, we use machine learning to learn from a few trial sample printings and automatically provide printer the optimal parameters to compensate the cell-induced scattering effects. We employ a deep learning method with a learning-based data augmentation which only requires a small amount of training data. After learning from the data, the algorithm can automatically generate the printer parameters to compensate the scattering effects. Our method shows strong improvement in the intra-layer printing resolution for bioprinting, which can be further extended to solve the light scattering problems in multilayer 3D bioprinting processes.


Asunto(s)
Bioimpresión , Aprendizaje Profundo , Materiales Biocompatibles , Bioimpresión/métodos , Impresión Tridimensional , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA