Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 20(6)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35736169

RESUMEN

Collagens from a wide array of animals have been explored for use in tissue engineering in an effort to replicate the native extracellular environment of the body. Marine-derived biomaterials offer promise over their conventional mammalian counterparts due to lower risk of disease transfer as well as being compatible with more religious and ethical groups within society. Here, collagen type I derived from a marine source (Macruronus novaezelandiae, Blue Grenadier) is compared with the more established porcine collagen type I and its potential in tissue engineering examined. Both collagens were methacrylated, to allow for UV crosslinking during extrusion 3D printing. The materials were shown to be highly cytocompatible with L929 fibroblasts. The mechanical properties of the marine-derived collagen were generally lower than those of the porcine-derived collagen; however, the Young's modulus for both collagens was shown to be tunable over a wide range. The marine-derived collagen was seen to be a potential biomaterial in tissue engineering; however, this may be limited due to its lower thermal stability at which point it degrades to gelatin.


Asunto(s)
Bioimpresión , Animales , Materiales Biocompatibles , Colágeno , Colágeno Tipo I , Gelatina , Hidrogeles , Mamíferos , Porcinos , Ingeniería de Tejidos , Andamios del Tejido
2.
Acta Biomater ; 131: 41-61, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34192571

RESUMEN

Hard tissue engineering has evolved over the past decades, with multiple approaches being explored and developed. Despite the rapid development and success of advanced 3D cell culture, 3D printing technologies and material developments, a gold standard approach to engineering and regenerating hard tissue substitutes such as bone, dentin and cementum, has not yet been realised. One such strategy that differs from conventional regenerative medicine approach of other tissues, is the in vitro mineralisation of collagen templates in the absence of cells. Collagen is the most abundant protein within the human body and forms the basis of all hard tissues. Once mineralised, collagen provides important support and protection to humans, for example in the case of bone tissue. Multiple in vitro fabrication strategies and mineralisation approaches have been developed and their success in facilitating mineral deposition on collagen to achieve bone-like scaffolds evaluated. Critical to the success of such fabrication and biomineralisation approaches is the collagen template, and its chemical composition, organisation, and density. The key factors that influence such properties are the collagen processing and fabrication techniques utilised to create the template, and the mineralisation strategy employed to deposit mineral on and throughout the templates. However, despite its importance, relatively little attention has been placed on these two critical factors. Here, we critically examine the processing, fabrication and mineralisation strategies that have been used to mineralise collagen templates, and offer insights and perspectives on the most promising strategies for creating mineralised collagen scaffolds. STATEMENT OF SIGNIFICANCE: In this review, we highlight the critical need to fabricate collagen templates with advanced processing techniques, in a manner that achieves biomimicry of the hierarchical collagen structure, prior to utilising in vitro mineralisation strategies. To this end, we focus on the initial collagen that is selected, the extraction techniques used and the native fibril forming potential retained to create reconstituted collagen scaffolds. This review synthesises current best practises in material sourcing, processing, mineralisation strategies and fabrication techniques, and offers insights into how these can best be exploited in future studies to successfully mineralise collagen templates.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Colágeno , Humanos , Impresión Tridimensional , Medicina Regenerativa
3.
Biomaterials ; 214: 119214, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31163358

RESUMEN

Given their native-like biological properties, high growth factor retention capacity and porous nature, sulfated-polysaccharide-based scaffolds hold great promise for a number of tissue engineering applications. Specifically, as they mimic important properties of tissues such as bone and cartilage they are ideal for orthopaedic tissue engineering. Their biomimicry properties encompass important cell-binding motifs, native-like mechanical properties, designated sites for bone mineralisation and strong growth factor binding and signaling capacity. Even so, scientists in the field have just recently begun to utilise them as building blocks for tissue engineering scaffolds. Most of these efforts have so far been directed towards in vitro studies, and for these reasons the clinical gap is still substantial. With this review paper, we have tried to highlight some of the important chemical, physical and biological features of sulfated-polysaccharides in relation to their chondrogenic and osteogenic inducing capacity. Additionally, their usage in various in vivo model systems is discussed. The clinical studies reviewed herein paint a promising picture heralding a brave new world for orthopaedic tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Polisacáridos/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Humanos , Hidrogeles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA