Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cureus ; 16(2): e54849, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38533160

RESUMEN

AIM: The present study aimed to determine if azithromycin (AZM) and doxycycline therapy, as an adjunct to scaling and root planning (SRP), modulate host response and improve clinical outcomes in periodontitis patients with type 2 diabetes mellitus (T2DM). PATIENTS AND METHODS: Forty-five periodontal sites in 15 periodontitis patients with T2DM received nonsurgical periodontal therapy (NSPT). In Group I, patients were placebo (not receiving any medication), Group II patients received systemic AZM therapy (AZM 250 mg/day for five days), and Group III patients received doxycycline (20 mg twice per day for three months. The resistin level was collected and measured by enzyme-linked immunosorbent assay (ELISA). Gingival index (GI), probing depth (PD), and clinical attachment level (CAL) were recorded at baseline, one-month, and three-month intervals. RESULTS: All groups showed improvement in clinical parameters and resistin levels throughout the study. The mean resistin level at three months was the highest in Group I and the lowest in Group III. Patients in Group II showed a larger decrease in mean PD than those in Group I and III. Group III had the highest gain in mean CAL, with an increase of 1.78 mm in attachment. CONCLUSION: Resistin might be a useful indicator of current disease status. In addition, benefits from adjunctive systemic use of AZM and doxycycline have been administered with non-surgical periodontal therapy.

2.
BMC Chem ; 18(1): 35, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368376

RESUMEN

Nanocomposites incorporating titanium dioxide (TiO2) have a significant potential for various industrial and medical applications. These nanocomposites exhibit selectivity as antimicrobial and anticancer agents. Antimicrobial activity is crucial for medical uses, including applications in food processing, packaging, and surgical instruments. Additionally, these nanocomposites exhibit selectivity as anticancer agents. A stable nanocomposite as a new anticancer and antibacterial chemical was prepared by coupling titanium dioxide nanoparticles with a polyurethane foam matrix through the thiourea group. The titanium dioxide/thiopolyurethane nanocomposite (TPU/TiO2) was synthesized from low-cost Ilmenite ore and commercial polyurethane foam. EDX analysis was used to determine the elemental composition of the titanium dioxide (TiO2) matrix. TiO2NPs were synthesized and were characterized using TEM, XRD, IR, and UV-Vis spectra. TiO2NPs and TPU foam formed a novel composite. The MTT assay assessed Cisplatin and HepG-2 and MCF-7 cytotoxicity in vitro. Its IC50 values for HepG-2 and MCF-7 were 122.99 ± 4.07 and 201.86 ± 6.82 µg/mL, respectively. The TPU/TiO2 exhibits concentration-dependent cytotoxicity against MCF-7 and HepG-2 cells in vitro. The selective index was measured against both cell lines; it showed its safety against healthy cells. Agar well-diffusion exhibited good inhibition zones against Escherichia coli (12 mm), Bacillus cereus (10 mm), and Aspergillus niger (19 mm). TEM of TPU/TiO2-treated bacteria showed ultrastructure changes, including plasma membrane detachment from the cell wall, which caused lysis and bacterial death. TPU/TiO2 can treat cancer and inhibit microbes in dentures and other items. Also, TPU/TiO2 inhibits E. coli, B. cereus, and A. niger microbial strains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA