Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Molecules ; 25(20)2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33066091

RESUMEN

The goal of this work was to develop a shape memory polymer (SMP) foam with visibility under both X-ray and magnetic resonance imaging (MRI) modalities. A porous polymeric material with these properties is desirable in medical device development for applications requiring thermoresponsive tissue scaffolds with clinical imaging capabilities. Dual modality visibility was achieved by chemically incorporating monomers with X-ray visible iodine-motifs and MRI visible monomers with gadolinium content. Physical and thermomechanical characterization showed the effect of increased gadopentetic acid (GPA) on shape memory behavior. Multiple compositions showed brightening effects in pilot, T1-weighted MR imaging. There was a correlation between the polymeric density and X-ray visibility on expanded and compressed SMP foams. Additionally, extractions and indirect cytocompatibility studies were performed to address toxicity concerns of gadolinium-based contrast agents (GBCAs). This material platform has the potential to be used in a variety of medical devices.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Materiales Inteligentes/química , Células 3T3 , Animales , Medios de Contraste/toxicidad , Gadolinio/química , Ratones , Microscopía Electrónica de Rastreo , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Temperatura de Transición , Rayos X
2.
Chemphyschem ; 19(16): 1999-2008, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-29282877

RESUMEN

Despite a number of clinically available hemostats, uncontrolled bleeding is the primary cause of trauma-related death. Shape-memory polymer (SMP) foams have a number of desirable properties for use as hemostats, including shape recovery to enable delivery into bleed sites, biocompatibility, and rapid blood clotting. To expand upon this material system, the current work aims to incorporate phenolic acids, which are honey-based antimicrobial agents, into SMP foams. We showed that cinnamic acid (CA) can be utilized as a monomer in SMP synthesis to provide foams with comparable pore structure and retained cytocompatibility. The addition of CA enabled tuning of thermal and shape-memory properties within clinically relevant ranges. Furthermore, the modified foams demonstrated initial and sustained antimicrobial effects against gram-positive and gram-negative bacteria. These multifunctional scaffolds demonstrate potential for use as hemostats to improve upon current hemorrhage treatments and provide a new tool in tuning the biological and material properties of SMP foams.


Asunto(s)
Antibacterianos/farmacología , Cinamatos/farmacología , Escherichia coli/efectos de los fármacos , Polímeros/farmacología , Staphylococcus epidermidis/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Cinamatos/química , Pruebas de Sensibilidad Microbiana , Polímeros/síntesis química , Polímeros/química
3.
Nat Mater ; 14(10): 1065-71, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26213897

RESUMEN

Devices resident in the stomach-used for a variety of clinical applications including nutritional modulation for bariatrics, ingestible electronics for diagnosis and monitoring, and gastric-retentive dosage forms for prolonged drug delivery-typically incorporate elastic polymers to compress the devices during delivery through the oesophagus and other narrow orifices in the digestive system. However, in the event of accidental device fracture or migration, the non-degradable nature of these materials risks intestinal obstruction. Here, we show that an elastic, pH-responsive supramolecular gel remains stable and elastic in the acidic environment of the stomach but can be dissolved in the neutral-pH environment of the small and large intestines. In a large animal model, prototype devices with these materials as the key component demonstrated prolonged gastric retention and safe passage. These enteric elastomers should increase the safety profile for a wide range of gastric-retentive devices.


Asunto(s)
Sistemas de Liberación de Medicamentos , Elastómeros , Polímeros/química , Estómago/efectos de los fármacos , Animales , Electrónica , Esófago/efectos de los fármacos , Tránsito Gastrointestinal/fisiología , Geles/química , Humanos , Concentración de Iones de Hidrógeno , Porcinos , Comprimidos , Tecnología Farmacéutica
4.
Macromol Rapid Commun ; 37(23): 1945-1951, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27568830

RESUMEN

Polyurethane shape memory polymer (SMP) foams are proposed for use as thrombogenic scaffolds to improve the treatment of vascular defects, such as cerebral aneurysms. However, gas blown SMP foams inherently have membranes between pores, which can limit their performance as embolic tissue scaffolds. Reticulation, or the removal of membranes between adjacent foam pores, is advantageous for improving device performance by increasing blood permeability and cellular infiltration. This work characterizes the effects of cold gas plasma reticulation processes on bulk polyurethane SMP films and foams. Plasma-induced changes on material properties are characterized using scanning electron microscopy, uniaxial tensile testing, goniometry, and free strain recovery experiments. Device specific performance is characterized in terms of permeability, platelet attachment, and cell-material interactions. Overall, plasma reticulated SMP scaffolds show promise as embolic tissue scaffolds due to increased bulk permeability, retained thrombogenicity, and favorable cell-material interactions.


Asunto(s)
Aneurisma Intracraneal/patología , Gases em Plasma/química , Poliuretanos/química , Andamios del Tejido/química , Animales , Células Cultivadas , Ratones , Células 3T3 NIH , Tamaño de la Partícula , Gases em Plasma/síntesis química , Poliuretanos/síntesis química , Propiedades de Superficie
5.
Macromol Biosci ; 24(3): e2300393, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37904644

RESUMEN

Achieving surgical success in orthopedic patients with metabolic disease remains a substantial challenge. Diabetic patients exhibit a unique tissue microenvironment consisting of high levels of reactive oxygen species (ROS), which promotes osteoclastic activity and leads to decreased bone healing. Alternative solutions, such as synthetic grafts, incorporating progenitor cells or growth factors, can be costly and have processing constraints. Previously, the potential for thiol-methacrylate networks to sequester ROS while possessing tunable mechanical properties and degradation rates has been demonstrated. In this study, the ability to fabricate thiol-methacrylate interconnected porous scaffolds using emulsion templating to create monoliths with an average porosity of 97.0% is reported. The average pore sizes of the scaffolds range from 27 to 656 µm. The scaffolds can sequester pathologic levels of ROS via hydrogen peroxide consumption and are not impacted by sterilization. Subcutaneous implantation shows no signs of acute toxicity. Finally, in a 6-week bilateral calvarial defect model in Zucker diabetic fatty rats, ROS scaffolds increase new bone volume by 66% over sham defects. Histologic analysis identifies woven bone infiltration throughout the scaffold and neovascularization. Overall, this study suggests that porous thiol-methacrylate scaffolds may improve healing for bone grafting applications where high levels of ROS hinder bone growth.


Asunto(s)
Diabetes Mellitus , Polímeros , Estirenos , Andamios del Tejido , Humanos , Ratas , Animales , Ingeniería de Tejidos , Especies Reactivas de Oxígeno , Ratas Zucker , Porosidad , Metacrilatos , Compuestos de Sulfhidrilo
6.
J Mater Chem B ; 12(15): 3694-3702, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38529581

RESUMEN

Thermoresponsive shape memory polymers (SMPs) prepared from UV-curable poly(ε-caprolactone) (PCL) macromers have the potential to create self-fitting bone scaffolds, self-expanding vaginal stents, and other shape-shifting devices. To ensure tissue safety during deployment, the shape actuation temperature (i.e., the melt transition temperature or Tm of PCL) must be reduced from ∼55 °C that is observed for scaffolds prepared from linear-PCL-DA (Mn ∼ 10 kg mol-1). Moreover, increasing the rate of biodegradation would be advantageous, facilitating bone tissue healing and potentially eliminating the need for stent retrieval. Herein, a series of six UV-curable PCL macromers were prepared with linear or 4-arm star architectures and with Mns of 10, 7.5, and 5 kg mol-1, and subsequently fabricated into six porous scaffold compositions (10k, 7.5k, 5k, 10k★, 7.5k★, and 5k★) via solvent casting particulate leaching (SCPL). Scaffolds produced from star-PCL-tetraacrylate (star-PCL-TA) macromers produced pronounced reductions in Tm with decreased Mnversus those formed with the corresponding linear-PCL-diacrylate (linear-PCL-DA) macromers. Scaffolds were produced with the desired reduced Tm profiles: 37 °C < Tm < 55 °C (self-fitting bone scaffold), and Tm ≤ 37 °C (self-expanding stent). As macromer Mn decreased, crosslink density increased while % crystallinity decreased, particularly for scaffolds prepared from star-PCL-TA macromers. While shape memory behavior was retained and radial expansion pressure increased, this imparted a reduction in modulus but with an increase in the rate of degradation.


Asunto(s)
Poliésteres , Andamios del Tejido , Temperatura de Transición , Huesos , Temperatura
7.
Biomed Eng Online ; 12: 103, 2013 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-24120254

RESUMEN

BACKGROUND: Shape memory polymer (SMP) foams are being investigated as an alternative aneurysm treatment method to embolic coils. The goal of both techniques is the reduction of blood flow into the aneurysm and the subsequent formation of a stable thrombus, which prevents future aneurysm rupture. The purpose of this study is to experimentally determine the parameters, permeability and form factor, which are related to the flow resistance imposed by both media when subjected to a pressure gradient. METHODS: The porous media properties-permeability and form factor-of SMP foams and mock embolic coils (MECs) were measured with a pressure gradient method by means of an in vitro closed flow loop. We implemented the Forchheimer-Hazen-Dupuit-Darcy equation to calculate these properties. Mechanically-reticulated SMP foams were fabricated with average cell sizes of 0.7E-3 and 1.1E-3 m, while the MECs were arranged with volumetric packing densities of 11-28%. RESULTS: The permeability of the SMP foams was an order of magnitude lower than that of the MECs. The form factor differed by up to two orders of magnitude and was higher for the SMP foams in all cases. The maximum flow rate of all samples tested was within the inertial laminar flow regime, with Reynolds numbers ranging between 1 and 35. CONCLUSIONS: The SMP foams impose a greater resistance to fluid flow compared to MECs, which is a result of increased viscous and inertial losses. These results suggest that aneurysms treated with SMP foam will have flow conditions more favorable for blood stasis than those treated with embolic coils having packing densities ≤ 28%.


Asunto(s)
Procedimientos Endovasculares/instrumentación , Polímeros , Hidrodinámica , Aneurisma Intracraneal/cirugía , Permeabilidad , Porosidad
8.
Med Phys ; 50(8): 4809-4815, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37202923

RESUMEN

BACKGROUND: Clinically relevant models that enable certain tasks such as calibration of medical imaging devices or techniques, device validation, training healthcare professionals, and more are vital to research throughout the medical field and are referred to as phantoms. Phantoms range in complexity from a vile of water to complex designs that emulate in vivo properties. PURPOSE: Specific phantoms that model the lungs have focused on replication of tissue properties but lack replication of the anatomy. This limits the use across multiple imaging modalities and for device testing when anatomical considerations as well as tissue properties are needed. This work reports a lung phantom design utilizing materials that accurately mimic the ultrasound and magnetic resonance imaging (MRI) properties of in vivo lungs and includes relevant anatomical equivalence. METHODS: The tissue mimicking materials were selected based on published studies of the materials, through qualitative comparisons of the materials with ultrasound imaging, and quantitative MRI relaxation values. A PVC ribcage was used as the structural support. The muscle/fat combined layer and the skin layer were constructed with various types of silicone with graphite powder added as a scattering agent where appropriate. Lung tissue was mimicked with silicone foam. The pleural layer was replicated by the interface between the muscle/fat layer and the lung tissue layer, requiring no additional material. RESULTS: The design was validated by accurately mimicking the distinct tissue layers expected with in vivo lung ultrasound while maintaining tissue-mimicking relaxation values in MRI as compared to reported values. Comparisons between the muscle/fat material and in vivo muscle/fat tissue demonstrated a 1.9% difference in T1 relaxation and a 19.8% difference in T2 relaxation. CONCLUSIONS: Qualitative US and quantitative MRI analysis verified the proposed lung phantom design for accurate modeling of the human lungs.


Asunto(s)
Músculos , Tórax , Humanos , Fantasmas de Imagen , Tejido Adiposo , Siliconas
9.
ACS Biomater Sci Eng ; 9(2): 642-650, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36729490

RESUMEN

Lung tissue biopsies can result in a leakage of blood (hemothorax) and air (pneumothorax) from the biopsy tract, which threatens the patient with a collapsed lung and other complications. We have developed a lung biopsy tract sealant based on a thiol-ene-crosslinked PEG hydrogel and polyurethane shape memory polymer (SMP) foam composite. After insertion into biopsy tracts, the PEG hydrogel component contributes to sealing through water-driven swelling, whereas the SMP foam contributes to sealing via thermal actuation. The gelation kinetics, swelling properties, and rheological properties of various hydrogel formulations were studied to determine the optimal formulation for composite fabrication. Composites were then fabricated via vacuum infiltration of the PEG hydrogel precursors into the SMP foam followed by thermal curing. After drying, the composites were crimped to enable insertion into biopsy tracts. Characterization revealed that the composites exhibited a slight delay in shape recovery compared to control SMP foams. However, the composites were still able to recover their shape in a matter of minutes. Cytocompatibility testing showed that leachable byproducts can be easily removed by washing and washed composites were not cytotoxic to mouse lung fibroblasts (L929s). Benchtop testing demonstrated that the composites can be easily deployed through a cannula, and the working time for deployment after exposure to water was 2 min. Furthermore, testing in an in vitro lung model demonstrated that the composites were able to effectively seal a lung biopsy tract and prevent air leakage. Collectively, these results show that the PEG hydrogel/SMP foam composites have the potential to be used as lung biopsy tract sealants to prevent pneumothorax post-lung biopsy.


Asunto(s)
Neumotórax , Materiales Inteligentes , Animales , Ratones , Hidrogeles , Materiales Biocompatibles , Biopsia
10.
J Colloid Interface Sci ; 625: 237-247, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35716618

RESUMEN

INTRODUCTION: Measuring in vivo degradation for polymeric scaffolds is critical for analysis of biocompatibility. Traditionally, histology has been used to estimate mass loss in scaffolds, allowing for simultaneous evaluation of mass loss and the biologic response to the implant. Oxidatively degradable shape memory polyurethane (SMP) foams have been implemented in two vascular occlusion devices: peripheral embolization device (PED) and neurovascular embolization device (NED). This work explores the errors introduced when using histological sections to evaluate mass loss. METHODS: Models of the SMP foams were created to mimic the device geometry and the tetrakaidekahedral structure of the foam pore. These models were degraded in Blender for a wide range of possible degradation amounts and the mass loss was estimated using m sections. RESULTS: As the number of sections (m) used to estimate mass loss for a volume increased the sampling error decreased and beyond m = 5, the decrease in error was insignificant. NED population and sampling errors were higher than for PED scenarios. When m ≥ 5, the averaged sampling error was below 1.5% for NED and 1% for PED scenarios. DISCUSSION/CONCLUSION: This study establishes a baseline sampling error for estimating randomly degraded porous scaffolds using a sectional method. Device geometry and the stage of mass loss influence the sampling error. Future studies will use non-random degradation to further investigate in vivo mass loss scenarios.


Asunto(s)
Polímeros , Poliuretanos , Porosidad
11.
ACS Appl Bio Mater ; 5(6): 2633-2642, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35658422

RESUMEN

First metatarsophalangeal joint (MPJ) arthroplasty procedures are a common podiatric procedure. However, almost one-third of cases require revision surgeries because of nonunions. Revision or salvage surgery requires more extensive hardware and bone grafts to recreate the first metatarsal. Unfortunately, salvage surgeries have a similar rate of failure attributed to delayed healing, bone graft dissolution, and the lack of bone ingrowth. Furthermore, patients who suffer from neuropathic comorbidities such as diabetes suffer from a diminished healing capacity. An increase in proinflammatory factors and the high presence of reactive oxygen species (ROS) present in diabetics are linked to lower fusion rates. To this end, there is a need for a clinically relevant bone graft to promote bone fusions in patients with neuropathic comorbidities. Incorporating thiol-ene networks for bone scaffolds has demonstrated increased osteogenic biomarkers over traditional polymeric materials. Furthermore, thiol-ene networks can act as antioxidants. Sulfide linkages within the network have an inherent ability to consume radical oxygen to create sulfoxide and sulfone groups. These unique properties of thiol-ene networks make them a promising candidate as bone grafts for diabetic patients. In this work, we propose a thiol-ene biomaterial to address the current limitations of MPJ fusion in diabetics by characterizing mechanical properties, degradation rates under accelerated conditions, and oxidative responsiveness under pathophysiologic conditions. We also demonstrated that thiol-ene-based materials could reduce the number of hydroxyl radicals associated with neuropathic comorbidities.


Asunto(s)
Polímeros , Compuestos de Sulfhidrilo , Humanos , Ensayo de Materiales
12.
J Biomed Mater Res B Appl Biomater ; 110(7): 1535-1544, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35090200

RESUMEN

Brain aneurysms can be treated with embolic coils using minimally invasive approaches. It is advantageous to modulate the biologic response of platinum embolic coils. Our previous studies demonstrated that shape memory polymer (SMP) foam coated embolization coils (FCC) devices demonstrate enhanced healing responses in animal models compared with standard bare platinum coil (BPC) devices. Macrophages are the most prevalent immune cell type that coordinate the greater immune response to implanted materials. Hence, we hypothesized that the highly porous SMP foam coatings on embolic coils activate a pro-regenerative healing phenotype. To test this hypothesis, we analyzed the number and type of infiltrating macrophages in FCC or BPC devices implanted in a rabbit elastase aneurysm model. FCC devices elicited a great number of infiltration macrophages, skewed significantly to a pro-regenerative M2-like phenotype 90 days following implantation. We devised an in vitro assay, where monocyte-derived macrophages were placed in close association with FCC or BPC devices for 6-72 h. Macrophages encountering SMP FCC-devices demonstrated highly mixed activation phenotypes at 6 h, heavily skewing toward an M2-like phenotype by 72 h, compared with macrophages encountering BPC devices. Macrophage activation was evaluated using gene expression analysis, and secreted cytokine evaluation. Together, our results demonstrate that FCC devices promoted a pro-regenerative macrophage activation phenotype, compared with BPC devices. Our in vitro findings corroborate with in vivo observations that SMP-based modification of embolic coils can promote better healing of the aneurysm site, by sustaining a pro-healing macrophage phenotype.


Asunto(s)
Embolización Terapéutica , Aneurisma Intracraneal , Materiales Inteligentes , Animales , Prótesis Vascular , Aneurisma Intracraneal/cirugía , Activación de Macrófagos , Platino (Metal) , Conejos
13.
J Mater Chem B ; 9(18): 3826-3837, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33979417

RESUMEN

"Self-fitting" shape memory polymer (SMP) scaffolds prepared as semi-interpenetrating networks (semi-IPNs) with crosslinked linear-poly(ε-caprolactone)-diacrylate (PCL-DA, Mn∼10 kg mol-1) and linear-poly(l-lactic acid) (PLLA, Mn∼15 kg mol-1) [75/25 wt%] exhibited robust mechanical properties and accelerated degradation rates versus a PCL-DA scaffold control. However, their potential to treat irregular craniomaxillofacial (CMF) bone defects is limited by their relatively high fitting temperature (Tfit∼55 °C; related to the Tm of PCL) required for shape recovery (i.e. expansion) and subsequent shape fixation during press fitting of the scaffold, which can be harmful to surrounding tissue. Additionally, the viscosity of the solvent-based precursor solutions, cast over a fused salt template during fabrication, can limit scaffold size. Thus, in this work, analogous semi-IPN SMP scaffolds were formed with a 4-arm star-PCL-tetracryalate (star-PCL-TA) (Mn∼10 kg mol-1) and star-PLLA (Mn∼15 kg mol-1). To assess the impact of a star-polymer architecture, four semi-IPN compositions were prepared: linear-PCL-DA/linear-PLLA (L/L), linear-PCL-DA/star-PLLA (L/S), star-PCL-TA/linear-PLLA (S/L) and star-PCL-TA/star-PLLA (S/S). Two PCL controls were also prepared: LPCL (i.e. 100% linear-PCL-DA) and SPCL (i.e. 100% star-PCL-TA). The S/S semi-IPN scaffold exhibited particularly desirable properties. In addition to achieving a lower, tissue-safe Tfit (∼45 °C), it exhibited the fastest rate of degradation which is anticipated to more favourably permit neotissue infiltration. The radial expansion pressure exerted by the S/S semi-IPN scaffold at Tfit was greater than that of LPCL, which is expected to enhance osseointegration and mechanical stability. The intrinsic viscosity of the S/S semi-IPN macromer solution was also reduced such that larger scaffold specimens could be prepared.


Asunto(s)
Materiales Inteligentes/química , Animales , Enfermedades Óseas/terapia , Fuerza Compresiva , Modelos Animales de Enfermedad , Poliésteres/química , Porosidad , Ratas , Materiales Inteligentes/metabolismo , Materiales Inteligentes/uso terapéutico , Viscosidad
14.
Med Eng Phys ; 75: 65-71, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672456

RESUMEN

To prevent aneurysmal rupture, intracranial aneurysms are often treated with endovascular metal coils that fill the aneurysm sac and stimulate thrombus formation, thereby isolating the aneurysm from the arterial flow. Despite its widespread use, this method can result in suboptimal outcomes leading to aneurysm recurrence. Recently, shape memory polymer foam has been proposed as an alternative aneurysm filler. In this work, a computational thrombus model is used to predict the clotting response within idealized 2D aneurysms virtually treated with foam. The results are compared to previously reported clot formation predictions in identical 2D aneurysm geometries filled with simplified endovascular metal coil shapes. Each of the foam-filled aneurysms reached at least 94% thrombus occlusion regardless of foam pore size or orientation, whereas the final thrombus occlusion within the coil-filled aneurysms varied from 80.8 to 92.2% with many of the cases leaving large areas in the aneurysm neck unfilled. Based on the simulations presented here, shape memory polymer foams may be able to produce more predictable, uniform, and complete clotting results than bare metal coils, independent of foam geometry or orientation.


Asunto(s)
Aneurisma/complicaciones , Simulación por Computador , Polímeros/farmacología , Trombosis/complicaciones , Trombosis/prevención & control , Polímeros/química
15.
J Biomed Mater Res A ; 108(6): 1281-1294, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32061006

RESUMEN

Shape memory polymer (SMP) foams are a promising material for hemostatic dressings due to their biocompatibility, high surface area, excellent shape recovery, and ability to quickly initiate blood clotting. Biodegradable SMP foams could eliminate the need for a secondary removal procedure of hemostatic material from the patients' wound, further facilitating wound healing. In this study, we developed hydrolytically and oxidatively biodegradable SMP foams by reacting polyols (triethanolamine or glycerol) with 6-aminocaproic acid or glycine to generate foaming monomers with degradable ester bonds. These monomers were used in foam synthesis to provide highly crosslinked SMP foam structures. The ester-containing foams showed clinically relevant thermal properties that were comparable to controls and excellent shape recovery within eight min. Triethanolamine-based ester-containing foams showed interconnected porous structure along with increased mechanical strength. Faster hydrolytic and oxidative biodegradation rates were achieved in ester-containing foams in comparison to controls. These biodegradable SMP foams with clinically applicable thermal properties possess great potential as an effective hemostatic device for use in hospitals or on battlefields.


Asunto(s)
Materiales Biocompatibles/química , Hemostáticos/química , Materiales Inteligentes/química , Vendajes , Humanos , Ensayo de Materiales , Poliuretanos/química , Porosidad , Cicatrización de Heridas
16.
ACS Biomater Sci Eng ; 6(5): 2588-2599, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32715083

RESUMEN

The IMPEDE Embolization Plug is a catheter-delivered vascular occlusion device that utilizes a porous shape memory polymer foam as a scaffold for thrombus formation and distal coils to anchor the device within the vessel. In this study, we investigated the biological response of porcine arteries to the IMPEDE device by assessing the extent of healing and overall effectiveness in occluding the vessel at 30, 60, and 90 days. Compared to control devices (Amplatzer Vascular Plug and Nester Embolization Coils), the host response to IMPEDE showed increased cellular infiltration (accommodated by the foam scaffold), which led to advanced healing of the initial thrombus to mature collagenous connective tissue (confirmed by transmission electron microscopy (TEM)). Over time, the host response to the IMPEDE device included degradation of the foam by multinucleated giant cells, which promoted fibrin and polymer degradation and advanced the healing response. Device effectiveness, in terms of vessel occlusion, was evaluated histologically by assessing the degree of recanalization. Although instances of recanalization were often observed at all time points for both control and test articles, the mature connective tissue within the foam scaffold of the IMPEDE devices improved percent vessel occlusion; when recanalization was observed in IMPEDE-treated vessels, channels were exclusively peri-device rather than intradevice, as often observed in the controls, and the vessels mostly remained >75% occluded. Although total vessel occlusion provides the optimal ischemic effect, in cardiovascular pathology, there is a progressive ischemic effect on the downstream vasculature as a vessel narrows. As such, we expect a sustained ischemic therapeutic effect to be observed in vessels greater than 75% occluded. Overall, the current study suggests the IMPEDE device presents advantages over controls by promoting an enhanced degree of healing within the foam scaffold, which decreases the likelihood of intradevice recanalization and ultimately may lead to a sustained ischemic therapeutic effect.


Asunto(s)
Embolización Terapéutica , Materiales Inteligentes , Enfermedades Vasculares , Animales , Prótesis Vascular , Polímeros , Porcinos
17.
J Biomed Mater Res B Appl Biomater ; 108(5): 2238-2249, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31961062

RESUMEN

Recent studies utilizing shape memory polymer foams to coat embolizing coils have shown potential benefits over current aneurysm treatments. In the current study utilizing a rabbit-elastase aneurysm model, the performance of test article (foam-coated coil [FCC]) and control (bare platinum coils [BPCs]) devices were compared at 30, 90, and 180 days using micro-CT and histological assessments. The host response was measured by identifying the cells regionally present within the aneurysm, and assessing the degree of residual debris and connective tissue. The 3D reconstructions of aneurysms provided context for histologic findings, and aided in the overall aneurysm assessment. At all time points, >75% of the cells categorized in each aneurysm were associated with a bioactive yet biocompatible host response (vs. the remainder of cells that were associated with acute inflammation). The extracellular matrix exhibited a transition from residual fibrin at 30 days to a greater degree of connective tissue at 90 and 180 days. Although the control BPC-treated aneurysms exhibited a greater degree of connective tissue at the earliest time point examined (30 days), by 180 days, the FCC-treated aneurysms had more connective tissue and less debris overall than the control aneurysms. When considering cell types and extracellular matrix composition, the overall host response scores were significantly better in FCC-treated aneurysms at the later time point. Based on the results of these metrics, the FCC device may lead to an advanced tissue remodeling response over BPC occlusion devices.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Inflamación/fisiopatología , Aneurisma Intracraneal/terapia , Platino (Metal)/química , Materiales Inteligentes/química , Animales , Prótesis Vascular , Materiales Biocompatibles Revestidos/metabolismo , Fibrina/metabolismo , Reacción a Cuerpo Extraño/patología , Humanos , Aneurisma Intracraneal/cirugía , Elastasa Pancreática/metabolismo , Diseño de Prótesis , Conejos , Medición de Riesgo , Materiales Inteligentes/metabolismo , Factores de Tiempo , Resultado del Tratamiento , Microtomografía por Rayos X
18.
Biomed Eng Online ; 8: 42, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20043833

RESUMEN

BACKGROUND: Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. METHODS: A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. RESULTS: Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. CONCLUSIONS: Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.


Asunto(s)
Procedimientos Quirúrgicos Cardiovasculares/instrumentación , Cianatos , Etanolaminas , Etilenodiaminas , Imagen por Resonancia Magnética , Polímeros , Temperatura , Isocianatos , Rayos Láser , Ensayo de Materiales , Reología
19.
J Biomed Mater Res B Appl Biomater ; 107(8): 2466-2475, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30775843

RESUMEN

Shape memory polymer (SMP) foam-coated coils (FCCs) are new embolic coils coated with porous SMP designed to expand for increased volume filling and enhanced healing after implantation. The purpose of this study was to compare chronic aneurysm healing after treatment with SMP FCCs to bare platinum coil (BPC) controls in the rabbit elastase aneurysm model. BPCs or SMP FCCs were implanted in rabbit elastase-induced aneurysms for follow-up at 30 days (n = 10), 90 days (n = 5), and 180 days (n = 12 for BPCs; n = 14 for SMP FCCs). Aneurysm occlusion and histologic healing, including a qualitative healing score, neointima thickness, collagen deposition, and inflammation were compared between the two groups. The mean neointima thickness was significantly greater in groups treated with SMP FCCs for all three time points. Histologic healing scores and collagen deposition quantification suggested that aneurysms treated with SMP FCCs experience more complete healing of the dome by 90 days, but the differences were not statistically significant. More progressive occlusion and recanalization were observed in aneurysms treated with SMP FCCs, but neither difference was statistically significant. Additionally, the SMP foam used in the FCCs was found to degrade faster in the rabbit elastase model than expected based on previous studies in a porcine sidewall aneurysm model. This study suggests that SMP FCCs can promote neointima formation along the aneurysm neck, and may lead to more complete healing of the dome and neck. These findings indicate potential benefits of this device for aneurysm occlusion procedures. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2466-2475, 2019.


Asunto(s)
Aneurisma , Materiales Biocompatibles Revestidos , Embolización Terapéutica/instrumentación , Elastasa Pancreática/toxicidad , Materiales Inteligentes , Aneurisma/inducido químicamente , Aneurisma/fisiopatología , Aneurisma/terapia , Animales , Conejos
20.
J Biomed Opt ; 13(2): 024018, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18465981

RESUMEN

We developed a technique for constructing light diffusing devices comprised of a flexible shape memory polymer (SMP) cylindrical diffuser attached to the tip of an optical fiber. The devices are fabricated by casting an SMP rod over the cleaved tip of an optical fiber and media blasting the SMP rod to create a light diffusing surface. The axial and polar emission profiles and circumferential (azimuthal) uniformity are characterized for various blasting pressures, nozzle-to-sample distances, and nozzle translation speeds. The diffusers are generally strongly forward-directed and consistently withstand over 8 W of incident IR laser light without suffering damage when immersed in water. These devices are suitable for various endoluminal and interstitial biomedical applications.


Asunto(s)
Diseño Asistido por Computadora , Modelos Teóricos , Polímeros/química , Refractometría/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Refractometría/métodos , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA