Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38255814

RESUMEN

Matrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine. Given the tissue-specificity and the youthfulness of research on MBVs, until now they have only been isolated from a few ECM sources. Therefore, the objective of this research was to isolate and identify the presence of MBVs in decellularised bovine pericardium ECM and to characterise their protein content, which is expected to play a major role in their biological potential. The results showed that nanovesicles, corresponding to the definition of recently described MBVs, could be isolated from decellularised bovine pericardium ECM. Moreover, these MBVs were composed of numerous proteins and cytokines, thus preserving a highly potential biological effect. Overall, this research shows that bovine pericardium MBVs show a rich and tissue-specific biological potential.


Asunto(s)
Materiales Biocompatibles , Medicina Regenerativa , Bovinos , Animales , Citocinas , Proteínas de la Matriz Extracelular , Pericardio
2.
J Nanobiotechnology ; 20(1): 363, 2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933375

RESUMEN

BACKGROUND: With the success of recent non-viral gene delivery-based COVID-19 vaccines, nanovectors have gained some public acceptance and come to the forefront of advanced therapies. Unfortunately, the relatively low ability of the vectors to overcome cellular barriers adversely affects their effectiveness. Scientists have thus been striving to develop ever more effective gene delivery vectors, but the results are still far from satisfactory. Therefore, developing novel strategies is probably the only way forward to bring about genuine change. Herein, we devise a brand-new gene delivery strategy to boost dramatically the transfection efficiency of two gold standard nucleic acid (NA)/polymer nanoparticles (polyplexes) in vitro. RESULTS: We conceived a device to generate milli-to-nanoscale vibrational cues as a function of the frequency set, and deliver vertical uniaxial displacements to adherent cells in culture. A short-lived high-frequency vibrational load (t = 5 min, f = 1,000 Hz) caused abrupt and extensive plasmalemma outgrowths but was safe for cells as neither cell proliferation rate nor viability was affected. Cells took about 1 hr to revert to quasi-naïve morphology through plasma membrane remodeling. In turn, this eventually triggered the mechano-activated clathrin-mediated endocytic pathway and made cells more apt to internalize polyplexes, resulting in transfection efficiencies increased from 10-to-100-fold. Noteworthy, these results were obtained transfecting three cell lines and hard-to-transfect primary cells. CONCLUSIONS: In this work, we focus on a new technology to enhance the intracellular delivery of NAs and improve the transfection efficiency of non-viral vectors through priming adherent cells with a short vibrational stimulation. This study paves the way for capitalizing on physical cell stimulation(s) to significantly raise the effectiveness of gene delivery vectors in vitro and ex vivo.


Asunto(s)
COVID-19 , Polímeros , Vacunas contra la COVID-19 , Técnicas de Transferencia de Gen , Humanos , Polietileneimina , Transfección
3.
Proc Natl Acad Sci U S A ; 113(3): 716-21, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26729859

RESUMEN

There has been a tremendous amount of research in the past decade to optimize the mechanical properties and degradation behavior of the biodegradable Mg alloy for orthopedic implant. Despite the feasibility of degrading implant, the lack of fundamental understanding about biocompatibility and underlying bone formation mechanism is currently limiting the use in clinical applications. Herein, we report the result of long-term clinical study and systematic investigation of bone formation mechanism of the biodegradable Mg-5wt%Ca-1wt%Zn alloy implant through simultaneous observation of changes in element composition and crystallinity within degrading interface at hierarchical levels. Controlled degradation of Mg-5wt%Ca-1wt%Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study.


Asunto(s)
Implantes Absorbibles , Aleaciones/farmacología , Magnesio/farmacología , Animales , Femenino , Fémur/diagnóstico por imagen , Fémur/ultraestructura , Estudios de Seguimiento , Humanos , Masculino , Osteogénesis/efectos de los fármacos , Implantación de Prótesis , Conejos , Radiografía , Factores de Tiempo , Cicatrización de Heridas/efectos de los fármacos
5.
Biomedicines ; 12(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062083

RESUMEN

Alginate/gelatin (Alg-Gel) hydrogels have been used experimentally, associated with mesenchymal stromal/stem cells (MSCs), to guide bone tissue formation. One of the main challenges for clinical application is optimizing Alg-Gel stiffness to guide osteogenesis. In this study, we investigated how Alg-Gel stiffness could modulate the dental pulp stem cell (DPSC) attachment, morphology, proliferation, and osteogenic differentiation, identifying the optimal conditions to uncouple osteogenesis from the other cell behaviors. An array of Alg-Gel hydrogels was prepared by casting different percentages of alginate and gelatin cross-linked with 2% CaCl2. We have selected two hydrogels: one with a stiffness of 11 ± 1 kPa, referred to as "low-stiffness hydrogel", formed by 2% alginate and 8% gelatin, and the other with a stiffness of 55 ± 3 kPa, referred to as "high-stiffness hydrogel", formed by 8% alginate and 12% gelatin. Hydrogel analyses showed that the average swelling rates were 20 ± 3% for the low-stiffness hydrogels and 35 ± 2% for the high-stiffness hydrogels. The degradation percentage was 47 ± 5% and 18 ± 2% for the low- and high-stiffness hydrogels, respectively. Both hydrogel types showed homogeneous surface shape and protein (Alg-Gel) interaction with CaCl2 as assessed by physicochemical characterization. Cell culture showed good adhesion of the DPSCs to the hydrogels and proliferation. Furthermore, better osteogenic activity, determined by ALP activity and ARS staining, was obtained with high-stiffness hydrogels (8% alginate and 12% gelatin). In summary, this study confirms the possibility of characterizing and optimizing the stiffness of Alg-Gel gel to guide osteogenesis in vitro without altering the other cellular properties of DPSCs.

6.
Adv Healthc Mater ; : e2401260, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38953344

RESUMEN

Polyetheretherketone (PEEK), a bioinert polymer known for its mechanical properties similar to bone, is capable of averting stress shielding. Due to these attributes, it finds applications in diverse fields like orthopedics, encompassing cervical disc replacement for the neck and spine, along with dentistry and plastic surgery. However, due to insufficient bonding with bone, various methods such as hydroxyapatite (HA) coating on the surface are attempted. Nonetheless, the interface between the polymer and ceramic, two different materials, tended to delaminate after transplantation, posing challenges in preventing implant escape or dislodgement. This research delves into the laser-driven hydroxyapatite penetration-synthesis technique. Differing from conventional coating methods that bond layers of dissimilar materials like HA and PEEK, this technology focuses on synthesizing and infiltrating ionized HA within the PEEK substrate resulting in an interface-free HA-PEEK surface. Conversely, HA-PEEK with this technology applied achieves complete, gap-free direct bone-implant integration.  Our research involved the analysis of various aspects. By means of these, we quantitatively assesed the enhanced bone bonding characteristics of HA-PEEK surfaces treated with this approach and offered and explanation for the mechanism responsible for direct bone integration.

7.
Biomolecules ; 13(9)2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37759789

RESUMEN

The clinical demand for tissue-engineered vascular grafts is still rising, and there are many challenges that need to be overcome, in particular, to obtain functional small-diameter grafts. The many advances made in cell culture, biomaterials, manufacturing techniques, and tissue engineering methods have led to various promising solutions for vascular graft production, with available options able to recapitulate both biological and mechanical properties of native blood vessels. Due to the rising interest in materials with bioactive potentials, materials from natural sources have also recently gained more attention for vascular tissue engineering, and new strategies have been developed to solve the disadvantages related to their use. In this review, the progress made in tissue-engineered vascular graft production is discussed. We highlight, in particular, the use of natural materials as scaffolds for vascular tissue engineering.


Asunto(s)
Prótesis Vascular , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Materiales Biocompatibles
8.
Materials (Basel) ; 15(22)2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-36431729

RESUMEN

MgF2-coated screws made of a Mg-2Y-1Mn-1Zn alloy, called NOVAMag® fixation screws (biotrics bioimplants AG), were tested in vitro for potential applications as biodegradable implants, and showed a controlled corrosion rate compared to non-coated screws. While previous studies regarding coated Mg-alloys have been carried out on flat sample surfaces, the present work focused on functional materials and final biomedical products. The substrates under study had a complex 3D geometry and a nearly cylindrical-shaped shaft. The corrosion rate of the samples was investigated using an electrochemical setup, especially adjusted to evaluate these types of samples, and thus, helped to improve an already patented coating process. A MgF2/MgO coating in the µm-range was characterized for the first time using complementary techniques. The coated screws revealed a smoother surface than the non-coated ones. Although the cross-section analysis revealed some fissures in the coating structure, the electrochemical studies using Hanks' salt solution demonstrated the effective role of MgF2 in retarding the alloy degradation during the initial stages of corrosion up to 24 h. The values of polarization resistance (Rp) of the coated samples extrapolated from the Nyquist plots were significantly higher than those of the non-coated samples, and impedance increased significantly over time. After 1200 s exposure, the Rp values were 1323 ± 144 Ω.cm2 for the coated samples and 1036 ± 198 Ω.cm2 for the non-coated samples, thus confirming a significant decrease in the degradation rate due to the MgF2 layer. The corrosion rates varied from 0.49 mm/y, at the beginning of the experiment, to 0.26 mm/y after 1200 s, and decreased further to 0.01 mm/y after 24 h. These results demonstrated the effectiveness of the applied MgF2 film in slowing down the corrosion of the bulk material, allowing the magnesium-alloy screws to be competitive as dental and orthopedic solutions for the biodegradable implants market.

9.
Int J Mol Sci ; 12(7): 4250-70, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21845076

RESUMEN

During the last decade, biodegradable metallic stents have been developed and investigated as alternatives for the currently-used permanent cardiovascular stents. Degradable metallic materials could potentially replace corrosion-resistant metals currently used for stent application as it has been shown that the role of stenting is temporary and limited to a period of 6-12 months after implantation during which arterial remodeling and healing occur. Although corrosion is generally considered as a failure in metallurgy, the corrodibility of certain metals can be an advantage for their application as degradable implants. The candidate materials for such application should have mechanical properties ideally close to those of 316L stainless steel which is the gold standard material for stent application in order to provide mechanical support to diseased arteries. Non-toxicity of the metal itself and its degradation products is another requirement as the material is absorbed by blood and cells. Based on the mentioned requirements, iron-based and magnesium-based alloys have been the investigated candidates for biodegradable stents. This article reviews the recent developments in the design and evaluation of metallic materials for biodegradable stents. It also introduces the new metallurgical processes which could be applied for the production of metallic biodegradable stents and their effect on the properties of the produced metals.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Enfermedad de la Arteria Coronaria/terapia , Metales/química , Stents , Implantes Absorbibles , Angioplastia de Balón , Materiales Biocompatibles/química , Humanos , Acero Inoxidable/química
10.
Front Cell Infect Microbiol ; 11: 678081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178721

RESUMEN

Introduction: The use of spinal implants for the treatment of back disorders is largely affected by the insurgence of infections at the implantation site. Antibacterial coatings have been proposed as a viable solution to limit such infections. However, despite being effective at short-term, conventional coatings lack the ability to prevent infections at medium and long-term. Hydrogel-based drug delivery systems may represent a solution controlling the release of the loaded antibacterial agents while improving cell integration. Agarose, in particular, is a biocompatible natural polysaccharide known to improve cell growth and already used in drug delivery system formulations. In this study, an agarose hydrogel-based coating has been developed for the controlled release of gentamicin (GS). Methods: Sand blasted Ti6Al4V discs were grafted with dopamine (DOPA) solution. After, GS loaded agarose hydrogels have been produced and additioned with tannic acid (TA) and calcium chloride (CaCl2) as crosslinkers. The different GS-loaded hydrogel formulations were deposited on Ti6Al4V-DOPA surfaces, and allowed to react under UV irradiation. Surface topography, wettability and composition have been analyzed with profilometry, static contact angle measurement, XPS and FTIR spectroscopy analyses. GS release was performed under pseudo-physiological conditions up to 28 days and the released GS was quantified using a specific ELISA test. The cytotoxicity of the produced coatings against human cells have been tested, along with their antibacterial activity against S. aureus bacteria. Results: A homogeneous coating was obtained with all the hydrogel formulations. Moreover, the coatings presented a hydrophilic behavior and micro-scale surface roughness. The addition of TA in the hydrogel formulations showed an increase in the release time compared to the normal GS-agarose hydrogels. Moreover, the GS released from these gels was able to significantly inhibit S. aureus growth compared to the GS-agarose hydrogels. The addition of CaCl2 to the gel formulation was able to significantly decrease cytotoxicity of the TA-modified hydrogels. Conclusions: Due to their surface properties, low cytotoxicity and high antibacterial effects, the hereby proposed gentamicin-loaded agarose-hydrogels provide new insight, and represent a promising approach for the surface modification of spinal implants, greatly impacting their application in the orthopedic surgical scenario.


Asunto(s)
Gentamicinas , Titanio , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos , Preparaciones de Acción Retardada , Dopamina , Gentamicinas/farmacología , Humanos , Hidrogeles , Sefarosa , Staphylococcus aureus
11.
ACS Biomater Sci Eng ; 7(8): 3669-3682, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34269556

RESUMEN

Twinning-induced plasticity (TWIP) Fe-Mn-C steels are biodegradable metals with far superior mechanical properties to any biodegradable metal, including Mg alloys, used in commercially available devices. For this reason, the use of Fe-Mn-C alloys to produce thinner and thinner implants can be exploited for overcoming the device size limitations that biodegradable stents still present. However, Fe-Mn steels are known to form a phosphate layer on their surface over long implantation times in animals, preventing device degradation in the required timeframe. The introduction of second phases in such alloys to promote galvanic coupling showed a short-term promise, and particularly the use of Ag looked especially effective. Nonetheless, the evolution of the corrosion mechanism of quaternary Fe-Mn-C-Ag alloys over time is still unknown. This study aims at understanding how corrosion changes over time for a TWIP steel alloyed with Ag using a simple static immersion setup. The presence of Ag promoted some galvanic coupling just in the first week of immersion; this effect was then suppressed by the formation of a mixed carbonate/hydroxide layer. This layer partly detached after 2 months and was replaced by a stable phosphate layer, over which a new carbonate/hydroxide formed after 4 months, effectively hindering the sample degradation. Attachment of phosphates to the surface matches 1-year outcomes from animal tests reported by other authors, but this phenomenon cannot be predicted using immersion up to 28 days. These results demonstrate that immersion tests of Fe-based degradable alloys can be related to animal tests only when they are carried out for a sufficiently long time and that galvanic coupling with Ag is not a viable strategy in the long term. Future works should focus more on surface modifications to control the interfacial behavior rather than alloying in the bulk.


Asunto(s)
Aleaciones , Plásticos Biodegradables , Animales , Ensayo de Materiales , Acero , Stents
12.
Mater Sci Eng C Mater Biol Appl ; 130: 112460, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34702535

RESUMEN

The present work targets the development of collagen-based hydrogel precursors, functionalized with photo-crosslinkable methacrylamide moieties (COL-MA), for vascular tissue engineering (vTE) applications. The developed materials were physico-chemically characterized in terms of crosslinking kinetics, degree of modification/conversion, swelling behavior, mechanical properties and in vitro cytocompatibility. The collagen derivatives were benchmarked to methacrylamide-modified gelatin (GEL-MA), due to its proven track record in the field of tissue engineering. To the best of our knowledge, this is the first paper in its kind comparing these two methacrylated biopolymers for vTE applications. For both gelatin and collagen, two derivatives with varying degrees of substitutions (DS) were developed by altering the added amount of methacrylic anhydride (MeAnH). This led to photo-crosslinkable derivatives with a DS of 74 and 96% for collagen, and a DS of 73 and 99% for gelatin. The developed derivatives showed high gel fractions (i.e. 74% and 84%, for the gelatin derivatives; 87 and 83%, for the collagen derivatives) and an excellent crosslinking efficiency. Furthermore, the results indicated that the functionalization of collagen led to hydrogels with tunable mechanical properties (i.e. storage moduli of [4.8-9.4 kPa] for the developed COL-MAs versus [3.9-8.4 kPa] for the developed GEL-MAs) along with superior cell-biomaterial interactions when compared to GEL-MA. Moreover, the developed photo-crosslinkable collagens showed superior mechanical properties compared to extracted native collagen. Therefore, the developed photo-crosslinkable collagens demonstrate great potential as biomaterials for vTE applications.


Asunto(s)
Gelatina , Ingeniería de Tejidos , Materiales Biocompatibles , Colágeno , Hidrogeles
13.
Materials (Basel) ; 14(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672249

RESUMEN

The main target for the future of materials in dentistry aims to develop dental implants that will have optimal integration with the surrounding tissues, while preventing or avoiding bacterial infections. In this project, poly(ether ether ketone) (PEEK), known for its suitable biocompa-tibility and mechanical properties for dental applications, was loaded with 1, 3, and 5 wt.% ZnO nanoparticles to provide antibacterial properties and improve interaction with cells. Sample cha-racterization by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) as well as mechanical properties showed the presence of the nanoparticles and their effect in PEEK matrices, preserving their relevant properties for dental applications. Al-though, the incorporation of ZnO nanoparticles did not improve the mechanical properties and a slight decrease in the thermal stability of the materials was observed. Hemocompatibility and osteoblasts-like cell viability tests showed improved biological performances when ZnO was present, demonstrating high potential for dental implant applications.

14.
Macromol Biosci ; 20(1): e1900253, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31834670

RESUMEN

The use of long-lasting polymer coatings on biodevice surfaces has been investigated to improve material-tissue interaction, minimize adverse effects, and enhance their functionality. Natural polymers, especially chitosan, are of particular interest due to their excellent biological properties, such as biocompatibility, non-toxicity, and antimicrobial properties. One way to produce chitosan coating is by covalent grafting with catechol molecules such as dopamine, caffeic acid, and tannic acid, resulting in an attachment ten times stronger than that of simple physisorption. Caffeic acid presents an advantage over dopamine because it allows direct chitosan grafting, due to its terminal carboxylic acid group, without the need of a linking arm, as employed in the dopamine approach. In this study, the grafting of chitosan using caffeic acid, over surfaces or in solution, is compared with dopamine grafting using poly(ethylene glycol) as a linking arm. The following coating properties are observed; covering and homogeneity are assessed by X-ray photoelectron spectroscopy and atomic force microscopy analyses, hydrophilicity with contact angle measurements, stability with aging tests, anticorrosion behavior, and coating non-toxicity. Results show that grafting using caffeic acid/chitosan in solution over a metallic surface may be advantageous, compared to traditional dopamine coating.


Asunto(s)
Catecoles/química , Quitosano/química , Materiales Biocompatibles Revestidos , Ensayo de Materiales , Polietilenglicoles/química , Animales , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Corrosión , Ratones , Células 3T3 NIH , Propiedades de Superficie
15.
Biointerphases ; 15(4): 041011, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32838534

RESUMEN

Dermatomycosis, such as candidiasis and mycosis among others, has emerged recently as the most frequent fungal infection worldwide. This disease is due to the skin's exposure to microorganisms that are able to pass through skin barrier defects. Therefore, textiles in direct contact with skin can serve as a source of contamination and fungus spread. In the current study, a sustainable and eco-friendly method for antifungal cotton finishing using Curcuma longa L extracted from rhizomes was investigated. To enhance the natural bioactive dye uptake and attachment, cellulosic cotton fibers were chemically modified using dopamine, a biocompatible molecule, leading to the deposition of a hydrophilic layer of polydopamine. The efficiency of the polydopamine coating on the cotton surface has been assessed by x-ray photoemission spectroscopy analyses, with the detection of nitrogen, and by water contact angle for the wettability enhancement. Furthermore, characterization of the modified samples confirms that the modification did not affect either the cellulosic fiber morphology or the mechanical properties. The dyeability and bioactive dye immobilization were then assessed by colorimetry. Finally, the effectiveness of the finished fabrics against Trichophyton (rubrum/mentagrophytes) and Candida albicans strains was evaluated and was shown to induce growth inhibition mainly on Candida albicans strains.


Asunto(s)
Antifúngicos/química , Colorantes/química , Indoles/química , Polímeros/química , Textiles/análisis , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Curcuma/química , Curcuma/metabolismo , Pruebas de Sensibilidad Microbiana , Propiedades de Superficie , Resistencia a la Tracción
16.
Biointerphases ; 15(4): 041004, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32689805

RESUMEN

Co-Cr alloys such as L605 are widely applied for the manufacture of medical devices, including tiny cardiovascular stents. The presence of potentially toxic and allergenic release of Ni, Co, and Cr ions from these devices remains an unsolved concern. Surface modification by oxygen plasma immersion implantation (PIII) could be an excellent technique to create a dense and thin passive oxide layer on a relatively complex shape of a tiny device, such as a stent, thus reducing the potential release of metallic ions. The effect of oxygen PIII was investigated on L605 alloy specimens, from 5 to 50 mTorr gas pressures, and under pulsed bias voltages from -0.1 to -10 kV. The surface chemistry was investigated by x-ray photoelectron spectroscopy, while its morphology and surface energy were evaluated, respectively, by atomic force microscopy and scanning electron microscopy and by a sessile drop static contact angle. Electrochemical characterization was performed by potentiodynamic tests in the saline solution. Mechanical properties of the modified surface layer, specifically film adhesion and hardness (H), were assessed by scratch and nanoindentation tests. Results shown that the oxidized layers were composed of a mixture of Co and Cr oxides and hydroxides and were rich in Co. The corrosion rate was considerably reduced after O PIII, even for treatments using low bias voltage (-0.1 kV) and with consequent low oxygen implantation depth. Moreover, O PIII also improved surface hardness. The oxidized layers were found to have good adhesion and to be scratch resistant.


Asunto(s)
Aleaciones de Cromo/química , Gases em Plasma/química , Corrosión , Técnicas Electroquímicas , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Oxígeno/química , Estrés Mecánico , Propiedades de Superficie
17.
J Biomater Appl ; 35(2): 274-286, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32356466

RESUMEN

Polyethylene glycol has been widely investigated for wound healing and dressing applications. Despite its advantages (i.e. great biocompatibility), polyethylene glycol lacks antibacterial activity. For this reason, semi-interpenetrated polymeric networks were prepared by combining a chemically cross-linked polyethylene glycol network with chitosan. The aim of this work was to identify the best amount of chitosan able to improve the antibacterial properties against Staphylococcus aureus. Briefly, the networks were synthesized by a sequential method, adding chitosan in different proportion to the polyethylene glycol. The antibacterial activity was tested following the MGA 0100 of the Pharmacopeia of the United States of Mexico. Fourier-transform infrared with attenuated total reflection spectroscopy, scanning electron microscopy and swelling behavior PBS at 37° C and room temperature were also performed to characterize the polymeric networks. The results showed that PC-2% was able to inhibit the bacterial growth of Staphylococcus aureus even more than Fosfomycin antibiotic. The networks showed cylindrical pores of different sizes (50-100 µm). The maximum swelling of all the networks was achieved in PBS at 37°C (>315%). Free hemoglobin and hemolysis assays were also evaluated to know the compatibility with erythrocytes. Human dermal fibroblasts were used to evaluate direct cytotoxicity. Therefore, the produced gels exerted interesting antibacterial activity and showed good biocompatibility properties.


Asunto(s)
Antibacterianos/química , Vendajes , Quitosano/química , Polietilenglicoles/química , Cicatrización de Heridas , Antibacterianos/farmacología , Línea Celular , Quitosano/farmacología , Humanos , Polietilenglicoles/farmacología , Piel/efectos de los fármacos , Piel/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
18.
Acta Biomater ; 98: 103-113, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31004841

RESUMEN

While Fe-based alloys have already been reported to possess all mechanical properties required for vascular stenting, their relatively low degradation rate in vivo still constitutes their main bottleneck. The inflammatory reaction generated by a stent is inversely proportional to its mass. Therefore, the tendency in stenting is to lower the section so to reduce the inflammatory reaction. Twinning-induced plasticity steels (TWIP) possess excellent mechanical properties for envisaging the next generation of thinner degradable cardiovascular stents. To accelerate the degradation, the addition of noble elements was proposed, aimed at promoting corrosion by galvanic coupling. In this context, silver was reported to generally increase the degradation rate. However, its impact on the deformation mechanism of TWIP steels has not been reported yet. Results show that the use of Ag significantly reduces the ductility without altering the strength of the material. Furthermore, the presence of Ag was found to promote a different deformation texture, thus stimulating the formation of mechanical martensite. Since a stent works in the deformed state, understanding the microstructure and texture resulting from plastic deformation can effectively help to forecast the degradation mechanisms taking place during implantation and the expected degradation time. Moreover, knowing the deformed microstructure allows to understand the formability of very small tubes, as precursors of the next generation of thin section degradable stents. STATEMENT OF SIGNIFICANCE: Commercial degradable magnesium stents are limited from their relatively big structure size. Twinning-induced plasticity steels possess outstanding mechanical properties, but their degradation time goes beyond the timeframe expected from clinics. The inclusion of noble Ag particles, which favor galvanic coupling, is known to promote corrosion and solve this limitation. However, it is necessary to understand the impact that Ag has on the deformation microstructure and on the mechanical properties. The addition of Ag reduces the ductility of a twinning-induced plasticity steel because of a different deformation microstructure. Since a stent works in a deformed state inside an artery, understanding the microstructural evolution after plastic deformation allows to better predict the device performances during service life.


Asunto(s)
Implantes Absorbibles , Plata/química , Acero/química , Stents , Aleaciones/química , Electrones , Dureza , Estrés Mecánico , Resistencia a la Tracción , Difracción de Rayos X
19.
Int J Biol Macromol ; 132: 178-189, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30926498

RESUMEN

Polyelectrolyte complexes of chitosan (Ch) and pectin (Pc) or alginate (Alg) were produced in the presence or absence of the silicone gel Silpuran® 2130 A/B (Sil) and the surfactant Kolliphor® P188 (Kol). Ch-Pc-Kol-based formulations presented higher porosity (up to 83.3%) and thickness (maximum of 2273.5 µm in PBS). Lower water contact angle was observed for Ch-Alg formulations (minimum of 36.8°) and these formulations presented higher swelling and mass loss in PBS (reaching up to 21.7 g/g and 80.4%, respectively). The addition of Sil to the matrices improved their elastic moduli, reaching a maximum of 4-fold change at 40% strain. The use of pectin instead of alginate augmented the elastic moduli, reaching 66 and 4-fold changes for dense and porous formulations, respectively. Pectin-containing scaffolds presented poroviscoelasticity, a typical mechanical feature of many soft tissues. The suitability of the materials for tissue engineering applications was demonstrated in terms of stability upon degradation in culture medium or lysozyme solution, as well as lack of cytotoxicity. This study evidences the potential of Ch-Pc-based materials to be further explored for this purpose, especially to improve the mechanical properties of chitosan-based scaffolds aiming medical applications.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Pectinas/química , Polímeros/química , Ingeniería de Tejidos , Andamios del Tejido/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/toxicidad , Línea Celular , Quitosano/farmacología , Quitosano/toxicidad , Fenómenos Mecánicos , Polielectrolitos , Agua/química
20.
Mater Sci Eng C Mater Biol Appl ; 104: 109973, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31499972

RESUMEN

Coronary artery and peripheral vascular diseases are the leading cause of morbidity and mortality worldwide and often require surgical intervention to replace damaged blood vessels, including the use of vascular patches in endarterectomy procedures. Tissue engineering approaches can be used to obtain biocompatible and biodegradable materials directed to this application. In this work, dense or porous scaffolds constituted of chitosan (Ch) complexed with alginate (A) or pectin (P) were fabricated and characterized considering their application as tissue-engineered vascular patches. Scaffolds fabricated with alginate presented higher culture medium uptake capacity (up to 17 g/g) than materials produced with pectin. A degradation study of the patches in the presence of lysozyme showed longer-term stability for Ch-P-based scaffolds. Pectin-containing matrices presented higher elastic modulus (around 280 kPa) and ability to withstand larger deformations. Moreover, these materials demonstrated better performance when tested for hemocompatibility, with lower levels of platelet adhesion and activation. Human smooth muscle cells (HSMC) adhered, spread and proliferated better on matrices produced with pectin, probably as a consequence of cell response to higher stiffness of this material. Thus, the outcomes of this study demonstrate that Ch-P-based scaffolds present superior characteristics for the application as vascular patches. Despite polysaccharides are yet underrated in this field, this work shows that biocompatible tridimensional structures based on these polymers present high potential to be applied for the reconstruction and regeneration of vascular tissues.


Asunto(s)
Polisacáridos/química , Ingeniería de Tejidos/métodos , Enfermedades Vasculares/terapia , Alginatos/química , Materiales Biocompatibles/química , Células Cultivadas , Quitosano/química , Humanos , Miocitos del Músculo Liso/efectos de los fármacos , Pectinas/química , Polímeros/química , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA