Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO J ; 38(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30523147

RESUMEN

Proper temporal and spatial activation of stem cells relies on highly coordinated cell signaling. The primary cilium is the sensory organelle that is responsible for transmitting extracellular signals into a cell. Primary cilium size, architecture, and assembly-disassembly dynamics are under rigid cell cycle-dependent control. Using mouse incisor tooth epithelia as a model, we show that ciliary dynamics in stem cells require the proper functions of a cholesterol-binding membrane glycoprotein, Prominin-1 (Prom1/CD133), which controls sequential recruitment of ciliary membrane components, histone deacetylase, and transcription factors. Nuclear translocation of Prom1 and these molecules is particularly evident in transit amplifying cells, the immediate derivatives of stem cells. The absence of Prom1 impairs ciliary dynamics and abolishes the growth stimulation effects of sonic hedgehog (SHH) treatment, resulting in the disruption of stem cell quiescence maintenance and activation. We propose that Prom1 is a key regulator ensuring appropriate response of stem cells to extracellular signals, with important implications for development, regeneration, and diseases.


Asunto(s)
Antígeno AC133/metabolismo , Cilios/metabolismo , Incisivo/citología , Antígeno AC133/genética , Animales , Núcleo Celular/metabolismo , Células Cultivadas , Humanos , Incisivo/metabolismo , Ratones , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Transporte de Proteínas , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo
2.
Int J Mol Sci ; 20(9)2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-31072004

RESUMEN

Deciphering how signaling pathways interact during development is necessary for understanding the etiopathogenesis of congenital malformations and disease. In several embryonic structures, components of the Hedgehog and retinoic acid pathways, two potent players in development and disease are expressed and operate in the same or adjacent tissues and cells. Yet whether and, if so, how these pathways interact during organogenesis is, to a large extent, unclear. Using genetic and experimental approaches in the mouse, we show that during development of ontogenetically different organs, including the tail, genital tubercle, and secondary palate, Sonic hedgehog (SHH) loss-of-function causes anomalies phenocopying those induced by enhanced retinoic acid signaling and that SHH is required to prevent supraphysiological activation of retinoic signaling through maintenance and reinforcement of expression of the Cyp26 genes. Furthermore, in other tissues and organs, disruptions of the Hedgehog or the retinoic acid pathways during development generate similar phenotypes. These findings reveal that rigidly calibrated Hedgehog and retinoic acid activities are required for normal organogenesis and tissue patterning.


Asunto(s)
Familia 26 del Citocromo P450/genética , Desarrollo Embrionario/genética , Proteínas Hedgehog/genética , Ácido Retinoico 4-Hidroxilasa/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Embrión de Mamíferos , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Organogénesis/genética , Transducción de Señal/genética , Diente/crecimiento & desarrollo , Diente/metabolismo , Tretinoina/metabolismo
3.
Development ; 138(18): 4063-73, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21862563

RESUMEN

Much of our knowledge about mammalian evolution comes from examination of dental fossils, because the highly calcified enamel that covers teeth causes them to be among the best-preserved organs. As mammals entered new ecological niches, many changes in tooth number occurred, presumably as adaptations to new diets. For example, in contrast to humans, who have two incisors in each dental quadrant, rodents only have one incisor per quadrant. The rodent incisor, because of its unusual morphogenesis and remarkable stem cell-based continuous growth, presents a quandary for evolutionary biologists, as its origin in the fossil record is difficult to trace, and the genetic regulation of incisor number remains a largely open question. Here, we studied a series of mice carrying mutations in sprouty genes, the protein products of which are antagonists of receptor-tyrosine kinase signaling. In sprouty loss-of-function mutants, splitting of gene expression domains and reduced apoptosis was associated with subdivision of the incisor primordium and a multiplication of its stem cell-containing regions. Interestingly, changes in sprouty gene dosage led to a graded change in incisor number, with progressive decreases in sprouty dosage leading to increasing numbers of teeth. Moreover, the independent development of two incisors in mutants with large decreases in sprouty dosage mimicked the likely condition of rodent ancestors. Together, our findings indicate that altering genetic dosage of an antagonist can recapitulate ancestral dental characters, and that tooth number can be progressively regulated by changing levels of activity of a single signal transduction pathway.


Asunto(s)
Proteínas Tirosina Quinasas Receptoras/fisiología , Diente/embriología , Proteínas Adaptadoras Transductoras de Señales , Animales , Embrión de Mamíferos , Femenino , Dosificación de Gen/fisiología , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Modelos Biológicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Odontogénesis/genética , Odontogénesis/fisiología , Embarazo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Diente/anatomía & histología , Diente/metabolismo , Diente Supernumerario/genética
4.
Proc Natl Acad Sci U S A ; 108(42): 17355-9, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21987823

RESUMEN

Contrary to their reptilian ancestors, which had numerous dental generations, mammals are known to usually develop only two generations of teeth. However, a few mammal species have acquired the ability to continuously replace their dentition by the constant addition of supernumerary teeth moving secondarily toward the front of the jaw. The resulting treadmill-like replacement is thus horizontal, and differs completely from the vertical dental succession of other mammals and their extinct relatives. Despite the developmental implications and prospects regarding the origin of supernumerary teeth, this striking innovation remains poorly documented. Here we report another case of continuous dental replacement in an African rodent, Heliophobius argenteocinereus, which combines this dental system with the progressive eruption of high-crowned teeth. The escalator-like mechanism of Heliophobius constitutes an original adaptation to hyper-chisel tooth digging involving high dental wear. Comparisons between Heliophobius and the few mammals that convergently acquired continuous dental replacement reveal that shared inherited traits, including dental mesial drift, delayed eruption, and supernumerary molars, comprise essential prerequisites to setting up this dental mechanism. Interestingly, these dental traits are present to a lesser extent in humans but are absent in mouse, the usual biological model. Consequently, Heliophobius represents a suitable model to investigate the molecular processes leading to the development of supernumerary teeth in mammals, and the accurate description of these processes could be a significant advance for further applications in humans, such as the regeneration of dental tissues.


Asunto(s)
Odontogénesis/fisiología , Roedores/crecimiento & desarrollo , Adaptación Fisiológica , Animales , Evolución Biológica , Dentición , Conducta Alimentaria , Humanos , Ratones , Modelos Animales , Modelos Biológicos , Filogenia , Roedores/fisiología , Especificidad de la Especie , Diente/anatomía & histología , Diente/crecimiento & desarrollo , Diente Supernumerario
5.
bioRxiv ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38187646

RESUMEN

Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Different species of voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars that have similar size and shape, providing alternative models for studying roots. We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. Bulk transcriptomics analyses of embryonic molar development in bank voles also demonstrated conserved patterns of dental gene expression compared to mice, with species-specific variation likely related to developmental timing and morphological differences between mouse and vole molars. Our results support ongoing evolution of dental genes across Glires, revealing the complex evolutionary background of convergent evolution for ever-growing molars.

6.
bioRxiv ; 2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37034814

RESUMEN

Amelogenesis, the formation of dental enamel, is driven by specialized epithelial cells called ameloblasts, which undergo successive stages of differentiation. Ameloblasts secrete enamel matrix proteins (EMPs), proteases, calcium, and phosphate ions in a stage-specific manner to form mature tooth enamel. Developmental defects in tooth enamel are common in humans, and they can greatly impact the well-being of affected individuals. Our understanding of amelogenesis and developmental pathologies is rooted in past studies using epithelial Cre driver and knockout alleles. However, the available mouse models are limited, as most do not allow targeting different ameloblast sub-populations, and constitutive loss of EMPs often results in severe phenotype in the mineral, making it difficult to interpret defect mechanisms. Herein, we report on the design and verification of a toolkit of twelve mouse alleles that include ameloblast-stage specific Cre recombinases, fluorescent reporter alleles, and conditional flox alleles for the major EMPs. We show how these models may be used for applications such as sorting of live stage specific ameloblasts, whole mount imaging, and experiments with incisor explants. The full list of new alleles is available at https://dev.facebase.org/enamelatlas/mouse-models/ .

7.
Curr Top Dev Biol ; 149: 373-419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35606061

RESUMEN

Ectodermal organs originate from the outermost germ layer of the developing embryo and include the skin, hair, tooth, nails, and exocrine glands. These organs develop through tightly regulated, sequential and reciprocal epithelial-mesenchymal crosstalk, and they eventually assume various morphologies and functions while retaining the ability to regenerate. As with many other tissues in the body, the development and morphogenesis of these organs are regulated by a set of common signaling pathways, such as Shh, Wnt, Bmp, Notch, Tgf-ß, and Eda. However, subtle differences in the temporal activation, the multiple possible combinations of ligand-receptor activation, the various cofactors, as well as the underlying epigenetic modulation determine how each organ develops into its adult form. Although each organ has been studied separately in considerable detail, the mechanisms underlying the parallels and differences in signaling that regulate their development have rarely been investigated. First, we will use the tooth, the hair follicle, and the mammary gland as representative ectodermal organs to explore how the development of signaling centers and establishment of stem cell populations influence overall growth and morphogenesis. Then we will compare how some of the major signaling pathways (Shh, Wnt, Notch and Yap/Taz) differentially regulate developmental events. Finally, we will discuss how signaling regulates regenerative processes in all three.


Asunto(s)
Ectodermo , Transducción de Señal , Folículo Piloso , Morfogénesis , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo
8.
Nat Commun ; 11(1): 4816, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968047

RESUMEN

Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation.


Asunto(s)
Diferenciación Celular , Células Madre/citología , Diente/citología , Diente/crecimiento & desarrollo , Adolescente , Adulto , Animales , Diferenciación Celular/genética , Células Epiteliales , Femenino , Regulación del Desarrollo de la Expresión Génica , Heterogeneidad Genética , Humanos , Incisivo/citología , Incisivo/crecimiento & desarrollo , Masculino , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Diente Molar/citología , Diente Molar/crecimiento & desarrollo , Odontoblastos , Adulto Joven
9.
JBMR Plus ; 3(8): e10205, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31485553

RESUMEN

FGF signaling plays a critical role in tooth development, and mutations in modulators of this pathway produce a number of striking phenotypes. However, many aspects of the role of the FGF pathway in regulating the morphological features and the mineral quality of the dentition remain unknown. Here, we used transgenic mice overexpressing the FGF negative feedback regulator Sprouty4 under the epithelial keratin 14 promoter (K14-Spry4) to achieve downregulation of signaling in the epithelium. This led to highly penetrant defects affecting both cusp morphology and the enamel layer. We characterized the phenotype of erupted molars, identified a developmental delay in K14-Spry4 transgenic embryos, and linked this with changes in the tooth developmental sequence. These data further delineate the role of FGF signaling in the development of the dentition and implicate the pathway in the regulation of tooth mineralization. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

10.
Nat Cell Biol ; 21(9): 1102-1112, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31481792

RESUMEN

The classical model of tissue renewal posits that small numbers of quiescent stem cells (SCs) give rise to proliferating transit-amplifying cells before terminal differentiation. However, many organs house pools of SCs with proliferative and differentiation potentials that diverge from this template. Resolving SC identity and organization is therefore central to understanding tissue renewal. Here, using a combination of single-cell RNA sequencing (scRNA-seq), mouse genetics and tissue injury approaches, we uncover cellular hierarchies and mechanisms that underlie the maintenance and repair of the continuously growing mouse incisor. Our results reveal that, during homeostasis, a group of actively cycling epithelial progenitors generates enamel-producing ameloblasts and adjacent layers of non-ameloblast cells. After injury, tissue repair was achieved through transient increases in progenitor-cell proliferation and through direct conversion of Notch1-expressing cells to ameloblasts. We elucidate epithelial SC identity, position and function, providing a mechanistic basis for the homeostasis and repair of a fast-turnover ectodermal appendage.


Asunto(s)
Ameloblastos/citología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Ectodermo/citología , Incisivo/citología , Animales , División Celular/fisiología , Células Epiteliales/citología , Ratones Transgénicos , Transducción de Señal/fisiología , Células Madre/citología
11.
Front Genet ; 9: 542, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505318

RESUMEN

Members of the fibroblast growth factor (FGF) family have myriad functions during development of both non-vertebrate and vertebrate organisms. One of these family members, FGF10, is largely expressed in mesenchymal tissues and is essential for postnatal life because of its critical role in development of the craniofacial complex, as well as in lung branching. Here, we review the function of FGF10 in morphogenesis of craniofacial organs. Genetic mouse models have demonstrated that the dysregulation or absence of FGF10 function affects the process of palate closure, and FGF10 is also required for development of salivary and lacrimal glands, the inner ear, eye lids, tongue taste papillae, teeth, and skull bones. Importantly, mutations within the FGF10 locus have been described in connection with craniofacial malformations in humans. A detailed understanding of craniofacial defects caused by dysregulation of FGF10 and the precise mechanisms that underlie them offers new opportunities for development of medical treatments for patients with birth defects and for regenerative approaches for cancer patients with damaged gland tissues.

12.
Elife ; 62017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28475038

RESUMEN

Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity.


Asunto(s)
Perfilación de la Expresión Génica , Incisivo/citología , Células Madre/fisiología , Animales , Biomarcadores/análisis , Proteínas Portadoras/análisis , Linaje de la Célula , Glicoproteínas de Membrana/análisis , Ratones , Proteínas del Tejido Nervioso/análisis
13.
J Bone Miner Res ; 32(11): 2219-2231, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28650075

RESUMEN

Rodents are characterized by continuously renewing incisors whose growth is fueled by epithelial and mesenchymal stem cells housed in the proximal compartments of the tooth. The epithelial stem cells reside in structures known as the labial (toward the lip) and lingual (toward the tongue) cervical loops (laCL and liCL, respectively). An important feature of the rodent incisor is that enamel, the outer, highly mineralized layer, is asymmetrically distributed, because it is normally generated by the laCL but not the liCL. Here, we show that epithelial-specific deletion of the transcription factor Islet1 (Isl1) is sufficient to drive formation of ectopic enamel by the liCL stem cells, and also that it leads to production of altered enamel on the labial surface. Molecular analyses of developing and adult incisors revealed that epithelial deletion of Isl1 affected multiple, major pathways: Bmp (bone morphogenetic protein), Hh (hedgehog), Fgf (fibroblast growth factor), and Notch signaling were upregulated and associated with liCL-generated ectopic enamel; on the labial side, upregulation of Bmp and Fgf signaling, and downregulation of Shh were associated with premature enamel formation. Transcriptome profiling studies identified a suite of differentially regulated genes in developing Isl1 mutant incisors. Our studies demonstrate that ISL1 plays a central role in proper patterning of stem cell-derived enamel in the incisor and indicate that this factor is an important upstream regulator of signaling pathways during tooth development and renewal. © 2017 American Society for Bone and Mineral Research.


Asunto(s)
Tipificación del Cuerpo , Calcificación Fisiológica , Esmalte Dental/embriología , Esmalte Dental/metabolismo , Incisivo/embriología , Incisivo/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción/metabolismo , Animales , Epitelio/embriología , Epitelio/metabolismo , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas con Homeodominio LIM/genética , Mandíbula/metabolismo , Ratones , Mutación/genética , Especificidad de Órganos , Análisis de Secuencia de ARN , Transducción de Señal , Factores de Transcripción/genética
14.
Sci Rep ; 5: 11658, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26123406

RESUMEN

The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2(-/-), Spry4(-/-), and Rsk2(-/Y) mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Evolución Biológica , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Fenotipo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fotogrametría , Proteínas Serina-Treonina Quinasas , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Diente/anatomía & histología , Diente/metabolismo
15.
PLoS One ; 9(1): e84343, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416220

RESUMEN

BACKGROUND: The RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked dominant genetic disorder causing mental retardation, skeletal growth delays, with craniofacial and digital abnormalities typically associated with this syndrome. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized. METHODOLOGY/PRINCIPAL FINDINGS: We examined, using X-Ray microtomographic analysis, the variable craniofacial dysmorphism and dental anomalies present in Rsk2 knockout mice, a model of Coffin-Lowry syndrome, as well as in triple Rsk1,2,3 knockout mutants. We report Rsk mutation produces surpernumerary teeth midline/mesial to the first molar. This highly penetrant phenotype recapitulates more ancestral tooth structures lost with evolution. Most likely this leads to a reduction of the maxillary diastema. Abnormalities of molar shape were generally restricted to the mesial part of both upper and lower first molars (M1). Expression analysis of the four Rsk genes (Rsk1, 2, 3 and 4) was performed at various stages of odontogenesis in wild-type (WT) mice. Rsk2 is expressed in the mesenchymal, neural crest-derived compartment, correlating with proliferative areas of the developing teeth. This is consistent with RSK2 functioning in cell cycle control and growth regulation, functions potentially responsible for severe dental phenotypes. To uncover molecular pathways involved in the etiology of these defects, we performed a comparative transcriptomic (DNA microarray) analysis of mandibular wild-type versus Rsk2-/Y molars. We further demonstrated a misregulation of several critical genes, using a Rsk2 shRNA knock-down strategy in molar tooth germs cultured in vitro. CONCLUSIONS: This study reveals RSK2 regulates craniofacial development including tooth development and patterning via novel transcriptional targets.


Asunto(s)
Anomalías Craneofaciales/enzimología , Cabeza/crecimiento & desarrollo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Anomalías Múltiples/enzimología , Anomalías Múltiples/patología , Anomalías Múltiples/fisiopatología , Animales , Anomalías Craneofaciales/patología , Anomalías Craneofaciales/fisiopatología , Activación Enzimática , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Odontogénesis , Fenotipo , ARN Interferente Pequeño/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Diente/anatomía & histología , Diente/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA