Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(6): 3458-3467, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38133630

RESUMEN

BACKGROUND: Okara cellulose is a highly abundant, green, sustainable, and biodegradable polymer with many potential industrial applications. In this study, we fabricated composite hydrogels with okara cellulose nanofibers (CNFs) and chitosan (CH) by hydrating, sonicating, and heating them at 100 °C for 30 min, and then induced their assembly by cooling. The effects of okara CNF (with and without 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) oxidation) and CH concentration on the structure and properties of the hydrogels was examined, including their microstructure, surface properties, rheological properties, and thermal stability. RESULTS: Our results indicate that there was an electrostatic attraction between the anionic okara CNF and cationic CH, which facilitated hydrogel formation. The surface, textural, rheological, and thermal stability properties were better for the composite hydrogels than for the single CH ones, as well as for the CNF that had undergone TEMPO oxidation. For the TC-CH hydrogels, the contact angle was 39.5°, the interfacial tension was 69.1 mN m-1 , and the surface tension was 1.44 mN m-1 . CONCLUSION: In this study, the novel hydrogels developed may be useful as a soft material in a range of applications in foods, supplements, health care products, cosmetics, and drugs. © 2023 Society of Chemical Industry.


Asunto(s)
Quitosano , Nanofibras , Celulosa/química , Quitosano/química , Hidrogeles/química , Nanofibras/química , Sonicación
2.
Crit Rev Food Sci Nutr ; 63(29): 10093-10104, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35475710

RESUMEN

In contrast to conventional particles that have isotropic surfaces, Janus ("two-faced") particles have anisotropic surfaces, which leads to novel physicochemical properties and functional attributes. Janus particles with differing compositions, structures, and functional attributes have been prepared using a variety of fabrication methods. Depending on their composition, Janus particles have been classified as inorganic, polymeric, or polymeric/inorganic types. Recently, there has been growing interest in preparing Janus particles from biological macromolecules to meet the demand for a more sustainable and environmentally friendly food and pharmaceutical supply. At interfaces, Janus particles exhibit the characteristics of both surfactants and Pickering stabilizers, and so their behavior can be described using adsorption theories developed to describe these surface-active substances. Research has highlighted several potential applications of Janus particles in food and medicine, including emulsion formation and stabilization, toxin detection, antimicrobial activity, drug delivery, and medical imaging. Nevertheless, further research is needed to design and fabricate Janus particles that are suitable as functional ingredients in the food and biomedicine industries.


Asunto(s)
Nanopartículas Multifuncionales , Emulsiones/química , Sistemas de Liberación de Medicamentos , Polímeros/química , Tensoactivos/química
3.
Molecules ; 27(10)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35630645

RESUMEN

Nanocomposite biopolymer materials containing colorimetric pH-responsive indicators were prepared from gelatin and chitosan nanofibers. Plant-based extracts from barberry and saffron, which both contained anthocyanins, were used as pH indicators. Incorporation of the anthocyanins into the biopolymer films increased their mechanical, water-barrier, and light-screening properties. Infrared spectroscopy and scanning electron microscopy analysis indicated that a uniform biopolymer matrix was formed, with the anthocyanins distributed evenly throughout them. The anthocyanins in the composite films changed color in response to alterations in pH or ammonia gas levels, which was used to monitor changes in the freshness of packaged fish during storage. The anthocyanins also exhibited antioxidant and antimicrobial activity, which meant that they could also be used to slow down the degradation of the fish. Thus, natural anthocyanins could be used as both freshness indicators and preservatives in biopolymer-based nanocomposite packaging materials. These novel materials may therefore be useful alternatives to synthetic plastics for some food packaging applications, thereby improving the environmental friendliness and sustainability of the food supply.


Asunto(s)
Nanocompuestos , Materiales Inteligentes , Animales , Antocianinas/química , Biopolímeros , Colorimetría , Concentración de Iones de Hidrógeno , Nanocompuestos/química , Extractos Vegetales/química
4.
J Sci Food Agric ; 102(10): 4162-4170, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35018651

RESUMEN

BACKGROUND: Aiming to address the practical problems of a low utilization rate and the serious waste of soybean residue, novel composite hydrogels based on okara cellulose before and after 2,2,6,6-tetramethylpiperidine oxide (TEMPO) oxidation and high polymers of chitosan (CH), carrageenan (CA) or Arabic gum (AG) were prepared by a homogeneous mixture in ionic liquid. RESULTS: In the present study, composite hydrogels fabricated from okara cellulose and CH, CA or AG were prepared by dissolving them in an ionic liquid, followed by heating (100 °C, 3 h) and then soaking them in a 1:1 water-isopropanol solution. The composite hydrogels prepared from TEMPO oxidation-treated cellulose were physically cross-linked to CH, CA or AG. The results showed that the intramolecular hydrogen bonds in the amorphous regions of the cellulose were disrupted, whereas the intermolecular hydrogen bonds between the biopolymers were increased, which promoted the formation of composite gels with crystalline structures. The TEMPO treatment increased the gel strength. For example, for the cellulose/CA gels, the hardness, fracturability, springiness and cohesiveness values were 5.9-, 4.3-, 2.4- and 3.6-fold higher compared to the non-treated ones, respectively. The composite hydrogels exhibited good thermal stability, swelling properties and mechanical properties. These novel composite polysaccharide-based hydrogels may therefore have great potential in various food and non-food fields. CONCLUSION: In summary, the addition of polymers (CH, CA or AG) and TEMPO oxidized cellulose was suitable for increasing the swelling, textural properties, thermal stability and rheological properties of hydrogels, which provides new ideas and new methods for the preparation of bio-based composite hydrogels. © 2022 Society of Chemical Industry.


Asunto(s)
Celulosa Oxidada , Quitosano , Líquidos Iónicos , Carragenina , Celulosa/química , Celulosa Oxidada/química , Quitosano/química , Hidrogeles/química
5.
J Sci Food Agric ; 102(5): 2070-2079, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34569077

RESUMEN

BACKGROUND: Norbixin, a carotenoid extracted from annatto seeds, is widely utilized as a natural pigment in foods, cosmetics and medicines. Its water solubility is relatively high under neutral or alkaline conditions but low under acidic conditions, which limits its application in some food products. RESULTS: This problem was overcome by utilizing liposomes to encapsulate the carotenoids so that they could be easily dispersed within acidic solutions. The norbixin was loaded into the liposomes using the pH-driven method. Liposomes were produced by passing aqueous phospholipid dispersions through a microfluidizer under high pressure. Norbixin was then added to the liposome dispersions at pH 7.0 and then driven into the hydrophobic domains of the phospholipid bilayers by acidifying the system. Measurements of the encapsulation efficiency showed that the norbixin was successfully loaded into the liposomes using the pH-driven method. X-ray diffraction analysis showed that the norbixin was in an amorphous state after incorporation into the liposomes. Encapsulation of norbixin within the liposomes was also shown to increase its water dispersibility and chemical stability under acidic pH conditions. CONCLUSION: The pH-driven method therefore provides a useful means of increasing the application of this bioactive carotenoid within functional foods and other products. © 2021 Society of Chemical Industry.


Asunto(s)
Carotenoides , Liposomas , Carotenoides/química , Concentración de Iones de Hidrógeno , Liposomas/química , Solubilidad
6.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34210093

RESUMEN

The development of plant-based functional food ingredients has become a major focus of the modern food industry as a response to changes in consumer attitudes. In particular, many consumers are switching to a plant-based diet because of their concerns about animal-derived foods on the environment, human health, and animal welfare. There has therefore been great interest in identifying, isolating, and characterizing functional ingredients from botanical sources, especially waste streams from food and agricultural production. However, many of these functional ingredients cannot simply be incorporated into foods because of their poor solubility, stability, or activity characteristics. In this article, we begin by reviewing conventional and emerging methods of extracting plant-based bioactive agents from natural resources including ultrasound-, microwave-, pulsed electric field- and supercritical fluid-based methods. We then provide a brief overview of different methods to characterize these plant-derived ingredients, including conventional, chromatographic, spectroscopic, and mass spectrometry methods. Finally, we discuss the design of plant-based delivery systems to encapsulate, protect, and deliver these functional ingredients, including micelles, liposomes, emulsions, solid lipid nanoparticles, and microgels. The potential benefits of these plant-based delivery systems are highlighted by discussing their use for incorporating functional ingredients into traditional meat products. However, the same technologies could also be employed to introduce functional ingredients into plant-based meat analogs.


Asunto(s)
Suplementos Dietéticos , Industria de Alimentos , Alimentos Funcionales , Productos de la Carne , Nanopartículas/química , Fitoquímicos/química , Animales , Humanos , Liposomas
7.
Crit Rev Food Sci Nutr ; 60(12): 2083-2097, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31257900

RESUMEN

When consumed at sufficiently high levels, polyphenols may provide health benefits, which is linked to their antidiabetic, antiinflamatory, antimicrobial, antioxidant, antitumor, and hypolipidemic properties. Moreover, certain polyphenol combinations exhibit synergistic effects when delivered together - the combined polyphenols have a higher biological activity than the sum of the individual ones. However, the commercial application of polyphenols as nutraceuticals is currently limited because of their poor solubility characteristics; instability when exposed to light, heat, and alkaline conditions; and, low and inconsistent oral bioavailability. Colloidal delivery systems are being developed to overcome these challenges. In this article, we review the design, fabrication, and utilization of food-grade biopolymer-based delivery systems for the encapsulation of one or more polyphenols. In particular, we focus on the creation of delivery systems constructed from edible proteins and polysaccharides. The optimization of biopolymer-based delivery systems may lead to the development of innovative polyphenol-enriched functional foods that can improve human health and wellbeing.


Asunto(s)
Biopolímeros/administración & dosificación , Suplementos Dietéticos , Sistemas de Liberación de Medicamentos , Alimentos Funcionales , Polifenoles/administración & dosificación , Polifenoles/farmacocinética , Disponibilidad Biológica , Biopolímeros/química , Biopolímeros/farmacocinética , Sinergismo Farmacológico , Humanos , Polifenoles/química
8.
Molecules ; 25(5)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150848

RESUMEN

There are many areas in medicine and industry where it would be advantageous to orally deliver bioactive proteins and peptides (BPPs), including ACE inhibitors, antimicrobials, antioxidants, hormones, enzymes, and vaccines. A major challenge in this area is that many BPPs degrade during storage of the product or during passage through the human gut, thereby losing their activity. Moreover, many BPPs have undesirable taste profiles (such as bitterness or astringency), which makes them unpleasant to consume. These challenges can often be overcome by encapsulating them within colloidal particles that protect them from any adverse conditions in their environment, but then release them at the desired site-of-action, which may be inside the gut or body. This article begins with a discussion of BPP characteristics and the hurdles involved in their delivery. It then highlights the characteristics of colloidal particles that can be manipulated to create effective BPP-delivery systems, including particle composition, size, and interfacial properties. The factors impacting the functional performance of colloidal delivery systems are then highlighted, including their loading capacity, encapsulation efficiency, protective properties, retention/release properties, and stability. Different kinds of colloidal delivery systems suitable for encapsulation of BPPs are then reviewed, such as microemulsions, emulsions, solid lipid particles, liposomes, and microgels. Finally, some examples of the use of colloidal delivery systems for delivery of specific BPPs are given, including hormones, enzymes, vaccines, antimicrobials, and ACE inhibitors. An emphasis is on the development of food-grade colloidal delivery systems, which could be used in functional or medical food applications. The knowledge presented should facilitate the design of more effective vehicles for the oral delivery of bioactive proteins and peptides.


Asunto(s)
Coloides/química , Portadores de Fármacos/química , Composición de Medicamentos , Péptidos/química , Proteínas/química , Administración Oral , Biopolímeros , Fenómenos Químicos , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Absorción Gastrointestinal , Humanos , Nanopartículas/química , Péptidos/administración & dosificación , Péptidos/farmacocinética , Proteínas/administración & dosificación , Proteínas/farmacocinética , Electricidad Estática
9.
Molecules ; 25(6)2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32213858

RESUMEN

The potential protective effect of nanoliposomes loaded with lotus seedpod oligomeric procyanidin (LSOPC) against melanogenesis and skin damaging was investigated. Fluorescence spectroscopy showed that, after encapsulation, the LSOPC-nanoliposomes still possessed strong inhibitory effects against melanogenesis, reducing the activity of both monophenolase and diphenolase. Molecular docking indicated that LSOPC could generate intense interactive configuration with tyrosinase through arene-H, arene-arene, and hydrophobic interaction. An ultraviolet radiated cell-culture model (human foreskin fibroblast cell (HFF-1)) was used to determine the protective effects of the LSOPC-nanoliposomes against skin aging and damage. Results showed that LSOPC-nanoliposomes exerted the highest protective effects against both ultraviolet B (UVB) and ultraviolet A (UVA) irradiation groups compared with non-encapsulated LSOPC and a control (vitamin C). Superoxide dismutase (SOD) and malonaldehyde (MDA) assays demonstrated the protection mechanism may be related to the anti-photooxidation activity of the procyanidin. Furthermore, a hydroxyproline assay suggested that the LSOPC-nanoliposomes had a strong protective effect against collagen degradation and/or synthesis after UVA irradiation.


Asunto(s)
Biflavonoides/química , Catequina/química , Liposomas/química , Lotus/química , Proantocianidinas/química , Piel/citología , Rayos Ultravioleta , Ácido Ascórbico/análisis , Línea Celular , Humanos , Malondialdehído/análisis , Superóxido Dismutasa/metabolismo
10.
Environ Sci Technol ; 52(15): 8792-8800, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29969018

RESUMEN

Knowledge of the physicochemical properties of ingestible silver nanoparticles (AgNPs) in the human gastrointestinal tract (GIT) is essential for assessing their bioavailability, bioactivity, and potential health risks. The gastrointestinal fate of AgNPs and silver ions from a commercial dietary supplement was therefore investigated using a simulated human GIT. In the mouth, no dissolution or aggregation of AgNPs occurred, which was attributed to the neutral pH and the formation of biomolecular corona, while the silver ions formed complexes with biomolecules (Ag-biomolecule). In the stomach, aggregation of AgNPs did not occur, but extensive dissolution was observed due to the low pH and the presence of Cl-. In the fed state (after meal), 72% AgNPs (by mass) dissolved, with 74% silver ions forming Ag-biomolecule and 26% forming AgCl. In the fasted state (before meal), 76% AgNPs dissolved, with 82% silver ions forming Ag-biomolecule and 18% forming AgCl. A biomolecular corona around AgNPs, comprised of mucin with multiple sulfhydryl groups, inhibited aggregation and dissolution of AgNPs. In the small intestine, no further dissolution or aggregation of AgNPs occurred, while the silver ions existed only as Ag-biomolecule. These results provide useful information for assessing the bioavailability of ingestible AgNPs and their subsequently potential health risks, and for the safe design and utilization of AgNPs in biomedical applications.


Asunto(s)
Tracto Gastrointestinal , Nanopartículas del Metal , Suplementos Dietéticos , Humanos , Iones , Plata
11.
Part Fibre Toxicol ; 14(1): 40, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29029643

RESUMEN

BACKGROUND: Engineered nanomaterials (ENMs) are increasingly added to foods to improve their quality, sensory appeal, safety and shelf-life. Human exposure to these ingested ENMs (iENMS) is inevitable, yet little is known of their hazards. To assess potential hazards, efficient in vitro methodologies are needed to evaluate particle biokinetics and toxicity. These methodologies must account for interactions and transformations of iENMs in foods (food matrix effect) and in the gastrointestinal tract (GIT) that are likely to determine nano-biointeractions. Here we report the development and application of an integrated methodology consisting of three interconnected stages: 1) assessment of iENM-food interactions (food matrix effect) using model foods; 2) assessment of gastrointestinal transformations of the nano-enabled model foods using a three-stage GIT simulator; 3) assessment of iENMs biokinetics and cellular toxicity after exposure to simulated GIT conditions using a triculture cell model. As a case study, a model food (corn oil-in-water emulsion) was infused with Fe2O3 (Iron(III) oxide or ferric oxide) ENMs and processed using this three-stage integrated platform to study the impact of food matrix and GIT effects on nanoparticle biokinetics and cytotoxicity . METHODS: A corn oil in phosphate buffer emulsion was prepared using a high speed blender and high pressure homogenizer. Iron oxide ENM was dispersed in water by sonication and combined with the food model. The resulting nano-enabled food was passed through a three stage (mouth, stomach and small intestine) GIT simulator. Size distributions of nano-enabled food model and digestae at each stage were analyzed by DLS and laser diffraction. TEM and confocal imaging were used to assess morphology of digestae at each phase. Dissolution of Fe2O3 ENM along the GIT was assessed by ICP-MS analysis of supernatants and pellets following centrifugation of digestae. An in vitro transwell triculture epithelial model was used to assess biokinetics and toxicity of ingested Fe2O3 ENM. Translocation of Fe2O3 ENM was determined by ICP-MS analysis of cell lysates and basolateral compartment fluid over time. RESULTS: It was demonstrated that the interactions of iENMs with food and GIT components influenced nanoparticle fate and transport, biokinetics and toxicological profile. Large differences in particle size, charge, and morphology were observed in the model food with and without Fe2O3 and among digestae from different stages of the simulated GIT (mouth, stomach, and small intestine). Immunoflorescence and TEM imaging of the cell culture model revealed markers and morphology of small intestinal epithelium including enterocytes, goblet cells and M cells. Fe2O3 was not toxic at concentrations tested in the digesta. In biokinetics studies, translocation of Fe2O3 after 4 h was <1% and ~2% for digesta with and without serum, respectively, suggesting that use of serum proteins alters iENMs biokinetics and raises concerns about commonly-used approaches that neglect iENM - food-GIT interactions or dilute digestae in serum-containing media. CONCLUSIONS: We present a simple integrated methodology for studying the biokinetics and toxicology of iENMs, which takes into consideration nanoparticle-food-GIT interactions. The importance of food matrix and GIT effects on biointeractions was demonstrated, as well as the incorporation of these critical factors into a cellular toxicity screening model. Standardized food models still need to be developed and used to assess the effect of the food matrix effects on the fate and bioactivity of iENMs since commercial foods vary considerably in their compositions and structures.


Asunto(s)
Ingestión de Alimentos , Compuestos Férricos/toxicidad , Tracto Gastrointestinal/efectos de los fármacos , Nanoestructuras/toxicidad , Nanotecnología , Toxicología/métodos , Administración Oral , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Digestión , Compuestos Férricos/administración & dosificación , Compuestos Férricos/química , Tracto Gastrointestinal/química , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/patología , Humanos , Modelos Anatómicos , Nanoestructuras/administración & dosificación , Nanoestructuras/química , Reproducibilidad de los Resultados , Medición de Riesgo , Solubilidad , Propiedades de Superficie , Factores de Tiempo , Toxicocinética
12.
Soft Matter ; 11(48): 9321-9, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26431057

RESUMEN

Transparent emulsion-based delivery systems suitable for encapsulating lipophilic bioactive agents can be fabricated using low-energy spontaneous emulsification methods. These emulsions are typically fabricated from non-ionic surfactants whose hydrophilic head groups are susceptible to dehydration upon heating. This phenomenon may promote emulsion instability due to enhanced droplet coalescence at elevated temperatures. Conversely, the same phenomenon can be used to fabricate optically transparent emulsions through the phase inversion temperature (PIT) method. The purpose of the current study was to examine the influence of oil phase composition and surfactant-to-oil ratio on the thermal behavior of surfactant-oil-water systems containing limonene, medium chain triglycerides (MCT), and Tween 60. Various types of thermal behavior (turbidity versus temperature profiles) were exhibited by these systems depending on their initial composition. For certain compositions, thermoreversible emulsions could be formed that were opaque at high temperatures but transparent at ambient temperatures. These systems may be particularly suitable for the encapsulation of bioactive agents in applications where optical clarity is important.


Asunto(s)
Calor , Aceites/química , Transición de Fase , Polisorbatos/química , Tensoactivos/química , Triglicéridos/química , Emulsiones
13.
Soft Matter ; 11(11): 2228-36, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25646949

RESUMEN

Delivery systems based on filled hydrogel particles (microgels) can be fabricated from natural food-grade lipids and biopolymers. The potential for controlling release characteristics by modulating the electrostatic interactions between emulsifier-coated lipid droplets and the biopolymer matrix within hydrogel particles was investigated. A multistage procedure was used to fabricate calcium alginate beads filled with lipid droplets stabilized by non-ionic, cationic, anionic, or zwitterionic emulsifiers. Oil-in-water emulsions stabilized by Tween 60, DTAB, SDS, or whey protein were prepared by microfluidization, mixed with various alginate solutions, and then microgels were formed by simple extrusion into calcium solutions. The microgels were placed into a series of buffer solutions with different pH values (2 to 11). Lipid droplets remained encapsulated under acidic and neutral conditions, but were released under highly basic conditions (pH 11) due to hydrogel swelling when the alginate concentration was sufficiently high. Lipid droplet release increased with decreasing alginate concentration, which could be attributed to an increase in the pore size of the hydrogel matrix. These results have important implications for the design of delivery systems to entrap and control the release of lipophilic bioactive components within filled hydrogel particles.


Asunto(s)
Alginatos/química , Emulsionantes/química , Emulsiones/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Microesferas , Aceites/química , Agua/química , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Concentración de Iones de Hidrógeno , Cinética , Gotas Lipídicas/química , Nefelometría y Turbidimetría , Tamaño de la Partícula , Electricidad Estática , Propiedades de Superficie
14.
Adv Colloid Interface Sci ; 332: 103278, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153416

RESUMEN

Biopolymer hydrogels have a broad range of applications as soft materials in a variety of commercial products, including foods, cosmetics, agrochemicals, personal care products, pharmaceuticals, and biomedical products. They consist of a network of entangled or crosslinked biopolymer molecules that traps relatively large quantities of water and provides semi-solid properties, like viscoelasticity or plasticity. Composite biopolymer hydrogels contain inclusions (fillers) to enhance their functional properties, including solid particles, liquid droplets, gas bubbles, nanofibers, or biological cells. These fillers vary in their composition, size, shape, rheology, and surface properties, which influences their impact on the rheological properties of the biopolymer hydrogels. In this article, the various types of biopolymers used to fabricate composite hydrogels are reviewed, with an emphasis on edible proteins and polysaccharides from sustainable sources, such as plants, algae, or microbial fermentation. The different kinds of gelling mechanism exhibited by these biopolymers are then discussed, including heat-, cold-, ion-, pH-, enzyme-, and pressure-set mechanisms. The different ways that biopolymer molecules can organize themselves in single and mixed biopolymer hydrogels are then highlighted, including polymeric, particulate, interpenetrating, phase-separated, and co-gelling systems. The impacts of incorporating fillers on the rheological properties of composite biopolymer hydrogels are then discussed, including mathematical models that have been developed to describe these effects. Finally, potential applications of composite biopolymer hydrogels are presented, including as delivery systems, packaging materials, artificial tissues, wound healing materials, meat analogs, filters, and adsorbents. The information provided in this article is intended to stimulate further research into the development and application of composite biopolymer hydrogels.


Asunto(s)
Hidrogeles , Hidrogeles/química , Biopolímeros/química , Reología , Polisacáridos/química
15.
Food Chem ; 460(Pt 3): 140761, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39137575

RESUMEN

This study aims to investigate the effects of interfacial layer composition and structure on the formation, physicochemical properties and stability of Pickering emulsions. Interfacial layers were formed using pea protein isolate (PPI), PPI microgel particles (PPIMP), a mixture of PPIMP and sodium alginate (PPIMP-SA), or PPIMP-SA conjugate. The encapsulation and protective effects on different hydrophobic bioactives were then evaluated within these Pickering emulsions. The results demonstrated that the PPIMP-SA conjugate formed thick and robust interfacial layers around the oil droplet surfaces, which increased the resistance of the emulsion to coalescence, creaming, and environmental stresses, including heating, light exposure, and freezing-thawing cycle. Additionally, the emulsion stabilized by the PPIMP-SA conjugate significantly improved the photothermal stability of hydrophobic bioactives, retaining a higher percentage of their original content compared to those in non-encapsulated forms. Overall, the novel protein microgels and the conjugate developed in this study have great potential for improving the physicochemical stability of emulsified foods.


Asunto(s)
Alginatos , Emulsiones , Interacciones Hidrofóbicas e Hidrofílicas , Microgeles , Proteínas de Guisantes , Alginatos/química , Emulsiones/química , Proteínas de Guisantes/química , Microgeles/química , Tamaño de la Partícula , Pisum sativum/química
16.
Int J Biol Macromol ; 258(Pt 2): 129079, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38161024

RESUMEN

Currently, there is great interest in converting edible agro-waste, such as okara from soybean production, into value-added products. For this study, we focus on fabricating composite hydrogels from okara cellulose nanofibers (CNFs) and carrageenan (CA). We also examined the effects of TEMPO oxidation of the okara CNFs, as well as CA concentration, on the microstructure and physicochemical properties of the composite hydrogels. The water holding capacity, oil holding capacity, surface tension, gel strength, and viscoelasticity of the composite microgels increased with increasing CA concentration, and it was found that the highest values were obtained for TC-CA2 hydrogel: contact angle = 43.6° and surface tension = 45.12 mN/m, which was attributed to the formation of a more regular and dense three-dimensional gel network. All the CNF-CA microgels had highly anionic ζ-potential values (-38.8 to -50.1 mV), with the magnitude of the negative charge increasing with TEMPO oxidation and carrageenan concentration. These results suggest there would be strong electrostatic repulsion between the composite hydrogels. The composite microgels produced in our work may be useful functional materials for utilization within the food industry, thereby converting a waste product into a valuable commodity.


Asunto(s)
Microgeles , Nanofibras , Celulosa/química , Carragenina , Nanofibras/química , Hidrogeles/química
17.
Int J Biol Macromol ; 278(Pt 3): 134847, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39168190

RESUMEN

Ciprofloxacin (CIP) is one of the most widely used antibiotics to treat bacterial infections. Consequently, there is concern that it may contaminate water resources due to its high usage level. It is therefore necessary to monitor, trace, and reduce exposure to these antibiotic residues. In the current study, the extraction of CIP from water was performed using a green adsorbent material based on cellulose/polyvinyl alcohol (PVA) decorated with mixed metal oxides (MMO). This cellulose/MMO/PVA adsorbent was synthesized using a simple sol-gel method. The prepared adsorbent materials were then characterized using a range of methods, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, gas adsorption analysis, X-ray diffraction, and Fourier Transform infrared. The impact of pH, adsorbent dose, contact time, and CIP concentration on ciprofloxacin extraction were examined. The equilibrium and kinetic adsorption data were well described using the Freundlich model (R2 = 0.965). The optimum conditions for CIP adsorption were: pH = 4.5; adsorbent dosage = 0.55 g·L-1; contact time = 83 min; and initial CIP concentration = 2 mg·L-1. The adsorption capacity of the cellulose/MMO/PVA adsorbent for CIP removal was ∼19 mg·g-1 (CIP removal = 86.48 %). This study shows that cellulose/MMO/PVA adsorbents have potential for removing contaminants from aqueous environments.


Asunto(s)
Celulosa , Ciprofloxacina , Contaminantes Químicos del Agua , Purificación del Agua , Ciprofloxacina/química , Ciprofloxacina/aislamiento & purificación , Celulosa/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Cinética , Concentración de Iones de Hidrógeno , Agua/química , Alcohol Polivinílico/química , Transición de Fase , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier
18.
Int J Biol Macromol ; 271(Pt 2): 132743, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821308

RESUMEN

Electrospinning is a technology for fabricating ultrafine fibers from natural or synthetic polymers that have novel or enhanced functional properties. These fibers have found applications in a diverse range of fields, including the food, medicine, cosmetics, agriculture, and chemical industries. However, the tendency for electrospun nanofibers to dissociate when exposed to certain environmental conditions limits many of their practical applications. The structural integrity and functional attributes of these nanofibers can be improved using physical and/or chemical crosslinking methods. This review article discusses the formation of polymeric nanofibers using electrospinning and then describes how different crosslinking methods can be used to enhance their mechanical, thermal, and biological attributes. Methods for optimizing the crosslinking reactions are discussed, including proper selection of crosslinker type and reaction conditions. Then, food, medical, and separation applications of crosslinked electrospun fibers are assessed, including in bone and skin tissue engineering, wound healing, drug delivery, air filtration, water filtration, oil removal, food packaging, food preservation, and bioactive delivery. Finally, areas where future research are needed are highlighted, as well as possible future applications of crosslinked nanofibers.


Asunto(s)
Nanofibras , Ingeniería de Tejidos , Nanofibras/química , Ingeniería de Tejidos/métodos , Reactivos de Enlaces Cruzados/química , Humanos , Materiales Biocompatibles/química , Polímeros/química , Sistemas de Liberación de Medicamentos
19.
Food Chem ; 451: 139477, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678664

RESUMEN

In this study, a combination of whey protein (hydrophilic coating) and polydopamine (crosslinking agent) was used to improve the stability and functionality of quercetin-loaded zein nanoparticles. There are two key benefits of the core-shell nanoparticles formed. First, the ability of the polydopamine to bind to both zein and whey protein facilitates the formation of a stable core-shell structure, thereby protecting quercetin from any pro-oxidants in the aqueous surroundings. Second, neutral and hydrophilic whey proteins were used for the surface coating of the nanoparticles to further enhance the sustained and slow release of quercetin, facilitating its sustained release into the body at a slow and steady rate. The results of this study will promote the innovative development of precise nutritional delivery systems for zein and provide a theoretical basis for the design and development of dietary supplements based on hydrophobic food nutrient molecules.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Indoles , Nanopartículas , Polímeros , Zeína , Zeína/química , Indoles/química , Polímeros/química , Nanopartículas/química , Proteína de Suero de Leche/química , Quercetina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos
20.
Food Funct ; 15(14): 7478-7490, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38915263

RESUMEN

People are increasingly preparing milk tea using plant-based milks rather than cow's milk, e.g., vegans, those with lactose intolerance, and those with flavor preferences. However, adding plant-based milks to tea may impact the digestion, release, and bioaccessibility of nutrients and nutraceuticals in both the tea and milk. In this study, oat milk tea model systems (OMTMSs) containing different fat and tea polyphenol concentrations were used to explore the impact of tea on macronutrient digestion in oat milk, as well as the impact of oat milk matrix on the polyphenol bioaccessibility in the tea. An in vitro gastrointestinal model that mimics the mouth, stomach, and small intestine was used. Tea polyphenols (>0.25%) significantly reduced the glucose and free fatty acids released from oat milk after intestinal digestion. Tea polyphenols (>0.10%) also inhibited protein digestion in oat milk during gastric digestion but not during intestinal digestion. The bioaccessibility of the polyphenols in the tea depended on the fat content of oat milk, being higher for medium-fat (3.0%) and high-fat (5.8%) oat milk than low-fat (1.5%) oat milk. Liquid chromatography-tandem mass spectrometry (UPLC-ESI-MS/MS) analysis showed that lipids improved the tea polyphenol bioaccessibility by influencing the release of flavonoids and phenolic acids from the food matrices. These results provide important information about the impact of tea on the gastrointestinal fate of oat milk, and vice versa, which may be important for enhancing the healthiness of plant-based beverages.


Asunto(s)
Avena , Digestión , Tracto Gastrointestinal , Polifenoles , , Polifenoles/metabolismo , Polifenoles/farmacocinética , Avena/química , Avena/metabolismo , Tracto Gastrointestinal/metabolismo , Té/química , Humanos , Disponibilidad Biológica , Animales , Nutrientes/metabolismo , Nutrientes/análisis , Leche/química , Leche/metabolismo , Modelos Biológicos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA