Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Thorax ; 73(11): 1085-1088, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29941477

RESUMEN

The Hermansky-Pudlak syndrome (HPS) is a collection of autosomal-recessive disorders characterised by tyrosinase-positive oculocutaneous albinism (OCA), bleeding diatheses and, in selected individuals, early-onset accelerated pulmonary fibrosis, neutropaenia and granulomatous colitis. We describe a young man who presented following a self-directed literature review prompted by severe bleeding complications following minor surgical and dental procedures in the context of OCA. HPS was clinically suspected, with subsequent genetic testing confirming biallelic mutations in the HPS1 gene. Of interest, this is the only described HPS type 1 patient with two different (compound heterozygote) splice site variants in HPS1 In addition to detailing a novel genetic result and outlining the progressive clinical course of disease in this case, we discuss the management of HPS, the prognostic value of subtype analysis and the technical difficulties relating to transplantation in the case of HPS-associated advanced pulmonary fibrosis. This case also illustrates the concept of lung phenocopy relationships and the potential for elucidating the pathogenesis of more common pulmonary disorders by studying genetic diseases that result in similar phenotypes. Furthermore, it re-emphasises the importance of the patient voice, particularly with regard to complex diagnoses and rare diseases.


Asunto(s)
ADN/genética , Síndrome de Hermanski-Pudlak/genética , Proteínas de la Membrana/genética , Mutación , Fibrosis Pulmonar/etiología , Adulto , Análisis Mutacional de ADN , Pruebas Genéticas , Síndrome de Hermanski-Pudlak/complicaciones , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Fenotipo , Fibrosis Pulmonar/diagnóstico , Fibrosis Pulmonar/genética
2.
Mol Pharm ; 11(11): 4270-9, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25243784

RESUMEN

The development of small interfering RNA (siRNA) to silence specific genes offers a new means of understanding and treating a range of respiratory diseases, including inflammatory lung disease. The alveolar macrophage (AM) is a key component of the inflammatory process in the lungs, associated with high levels of gene expression in inflammatory lung disease and therefore an attractive target for therapeutic siRNA. Delivery of siRNA to macrophages presents a significant delivery challenge, as fully differentiated alveolar macrophages are difficult to access and transfect. In this study we engineered particles suitable for inhalation that would efficiently transfect macrophages postinhalation. The process for encapsulation of siRNA in poly(lactic-co-glycolic acid) microparticles (MPs) was optimized using a double emulsion technique, and the resulting particles were characterized for size, shape, aerosol characteristics, encapsulation efficiency, and integrity of encapsulated siRNA. The cell uptake of the siRNA-loaded microparticles was determined by flow cytometry, confocal laser scanning microscopy (CLSM), and high-content analysis (HCA) with MPs capable of transfecting up to 55% of cells. Anti-TNFα siRNA-MPs were then prepared to study the functional activity of encapsulated siRNA in LPS-stimulated macrophages as a model of inflammation. The anti-TNFα siRNA-MPs were able to decrease TNFα expression by 45% over 48 h in the differentiated human monocytic cell line THP-1 compared to negligible knockdown using commercial transfection reagents and offered significant, sustained siRNA knockdown of TNFα in primary monocytes for up to 72 h.


Asunto(s)
Bioingeniería , Silenciador del Gen , Ácido Láctico/química , Leucemia Monocítica Aguda/terapia , Macrófagos Alveolares/efectos de los fármacos , Ácido Poliglicólico/química , ARN Interferente Pequeño/genética , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Aerosoles , Diferenciación Celular , Supervivencia Celular , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Emulsiones , Humanos , Lactante , Inflamación/genética , Inflamación/patología , Inflamación/terapia , Leucemia Monocítica Aguda/genética , Leucemia Monocítica Aguda/patología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/patología , Enfermedades Pulmonares/terapia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Masculino , Microesferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , ARN Interferente Pequeño/administración & dosificación , Células Tumorales Cultivadas , Factor de Necrosis Tumoral alfa/genética
3.
Pharm Res ; 28(9): 2233-45, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21647791

RESUMEN

PURPOSE: Inhaled recombinant Secretory Leukocyte Protease Inhibitor (rSLPI) has shown potential for treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs have limited clinical efficacy. Encapsulation of rSLPI within 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine]:Cholesterol liposomes (DOPS-rSLPI) protects rSLPI against Cat L inactivation in vitro. We aimed to determine the effect of liposomes on rSLPI pharmacokinetics and activity in vitro and after local delivery to the airways in vivo. METHODS: Transport of DOPS-rSLPI and free-rSLPI across a polarised air-liquid epithelial monolayer was measured. An asthma guinea pig model was administered either DOPS-rSLPI liposomes or free-rSLPI by intratracheal instillation. RESULTS: Apparent permeability (P(app)) of free-rSLPI was significantly higher at 4.9 x 10⁻6 cm/s than for DOPS-rSLPI, P(app) of 2.05 x 10⁻7 cm/s, confirmed by in vivo studies. Plasma rSLPI concentrations were highest in free-rSLPI-treated animals compared with those treated with DOPS-rSLPI; there also appeared to be a trend for higher intracellular rSLPI content in animals dosed with DOPS-rSLPI compared to free-rSLPI. Eosinophil influx was recorded as a measure of inflammation. Pre-dosing with either free-rSLPI or DOPS-rSLPI prevented inflammatory response to antigen challenge to levels comparable to control animals. CONCLUSION: Encapsulation of rSLPI in DOPS:Chol liposomes improves stability, reduces clearance and increases residence time in the lungs after local delivery.


Asunto(s)
Antiasmáticos/administración & dosificación , Antiasmáticos/farmacocinética , Asma/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Inhibidor Secretorio de Peptidasas Leucocitarias/administración & dosificación , Inhibidor Secretorio de Peptidasas Leucocitarias/farmacocinética , Administración por Inhalación , Animales , Antiasmáticos/uso terapéutico , Asma/genética , Transporte Biológico , Línea Celular , Permeabilidad de la Membrana Celular , Modelos Animales de Enfermedad , Composición de Medicamentos , Estabilidad de Medicamentos , Impedancia Eléctrica , Ensayo de Inmunoadsorción Enzimática , Cobayas , Humanos , Liposomas , Masculino , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/fisiología , Inhibidor Secretorio de Peptidasas Leucocitarias/uso terapéutico
4.
AAPS PharmSciTech ; 11(3): 1411-21, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20839079

RESUMEN

Inhaled recombinant secretory leukocyte protease inhibitor (rSLPI) has shown potential for the treatment of inflammatory lung conditions. Rapid inactivation of rSLPI by cathepsin L (Cat L) and rapid clearance from the lungs has limited clinical efficacy to date. Previous studies by us have shown that encapsulation of rSLPI within1,2-dioleoyl-sn-glycero-3-[phospho-L-serine]/cholesterol (DOPS/Chol) liposomes protects rSLPI against Cat L inactivation in vitro. Liquid DOPS-rSLPI preparations were found to be unstable upon long-term storage and nebulisation. The aim of this study was therefore to develop a method of manufacture for preparing DOPS-rSLPI liposomes as a dry powder for inhalation. DOPS-rSLPI dry powders were lyophilised and subsequently micronised with a novel micronisation aid. The effects of formulation and processing on rSLPI stability, activity, and uniformity of content within the powders were characterised. Using D-mannitol as the micronisation aid, dry powder particles in the inhalable size range (<5 µm) were prepared. By optimising process parameters, up to 54% of rSLPI was recovered after micronisation, of which there was no significant loss in anti-neutrophil elastase activity and no detectable evidence of protein degradation. Aerosolisation was achieved using a dry powder inhaler, and mass median aerodynamic diameter (MMAD) was evaluated after collection in a cascade impactor. Aerosolisation of the DOPS-rSLPI dry powder yielded 38% emitted dose, with 2.44 µm MMAD. When challenged with Cat L post-aerosolisation, DOPS-rSLPI dry powder was significantly better at retaining a protective function against Cat L-induced rSLPI inactivation compared to the aqueous DOPS-rSLPI liposome dispersion and was also more stable under storage.


Asunto(s)
Aerosoles/síntesis química , Cápsulas/síntesis química , Liposomas/síntesis química , Inhibidor Secretorio de Peptidasas Leucocitarias/administración & dosificación , Inhibidor Secretorio de Peptidasas Leucocitarias/química , Administración por Inhalación , Desecación , Difusión , Estabilidad de Medicamentos , Humanos , Polvos , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/síntesis química , Inhibidor Secretorio de Peptidasas Leucocitarias/genética
6.
J Microencapsul ; 26(6): 513-22, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18925490

RESUMEN

Secretory leukocyte protease inhibitor (SLPI) is an endogenous serine protease inhibitor that protects the lungs from excessive tissue damage caused by leukocyte proteases released during inflammation. Recombinant SLPI (rSLPI) has shown potential as a treatment for inflammatory lung conditions. To date, its clinical application has been limited by rapid enzymatic cleavage by cathepsins and rapid clearance from the lungs after inhalation. In this study, rSLPI was encapsulated in 1,2-Dioleoyl-sn-Glycero-3-[Phospho-L-Serine] : Cholesterol (DOPS : Chol) liposomes for inhalation. Incubation of rSLPI with cathepsin L leads to complete loss of activity while encapsulation of rSLPI in DOPS : Chol liposomes retained 92.6% of its activity after challenge with cathepsin L. rSLPI-loaded liposomes were aerosolized efficiently using a standard nebulizer with a minimal loss of activity and stability. This formulation was biocompatible and encapsulation did not appear to diminish access to intracellular sites of action in in vitro cell culture studies. Liposome encapsulation of rSLPI therefore improves stability and potentially reduces the level and frequency of dosing required for therapeutic effect after inhalation.


Asunto(s)
Catepsina L/metabolismo , Liposomas , Inhibidor Secretorio de Peptidasas Leucocitarias/administración & dosificación , Administración por Inhalación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/citología , Humanos , Liposomas/química , Pulmón/citología , Pulmón/metabolismo , Monocitos/citología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/uso terapéutico , Inhibidor Secretorio de Peptidasas Leucocitarias/uso terapéutico
7.
Chest ; 125(5): 1952-7, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15136414

RESUMEN

BACKGROUND: Alpha1-antitrypsin (A1AT) is an abundant protein that is synthesized in the liver and is secreted into the plasma. From the plasma, A1AT diffuses into various body compartments, including the lung where it provides much of the antiprotease protection. The current understanding of the pathogenesis of emphysema in A1AT-deficient individuals focuses on the polymerization of mutant protein within the liver, which results in a deficiency of circulating A1AT and a protease-antiprotease imbalance in the lungs. METHODS AND RESULTS: In this study, we evaluated BAL fluid samples from five healthy volunteers, five individuals with ZA1AT deficiency, and an individual with the PiZZ phenotype who had received a liver transplant. We show that the lung itself is a source of A1AT. In addition, the Z protein formed in the lung polymerizes, and these polymers are detectable in lung epithelial lining fluid by enzyme-linked immunosorbent assay and Western blot analysis. Finally, we show that polymeric ZA1AT is a potent neutrophil chemoattractant that is similar to polymerized MA1AT. CONCLUSIONS: Our findings suggest that the polymerization of locally produced ZA1AT is a contributory factor to the lung inflammation experienced by those with A1AT deficiency and that standard antiprotease therapies may not address this problem.


Asunto(s)
Factores Quimiotácticos/fisiología , Neutrófilos/fisiología , alfa 1-Antitripsina/fisiología , Adulto , Anciano , Líquido del Lavado Bronquioalveolar/química , Factores Quimiotácticos/análisis , Humanos , Pulmón , Masculino , Persona de Mediana Edad , Polímeros , alfa 1-Antitripsina/análisis , Deficiencia de alfa 1-Antitripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA