Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 14(9): 7010-4, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25924363

RESUMEN

Novel magnetic cellulose-chitosan composite microspheres were prepared by sol-gel transition method using ionic liquids as solvent for dissolution and regeneration. Subsequently, the composite microspheres activated by glutaradehyde to immobilize enzyme. Which of their structure, properties and morphology were studied by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and vibrating-sample magnetometer showed Fe3O4 nanoparticles with mean size of -10 nm were successfully embedded in the composite microspheres. The microshpheres were examined to be with the mean size of 20 µm and good magnetic property with saturation magnetization of 30.1 emu g(-1). The effect of pH and temperature on the immobilization of laccase was also investigated. Compared with free laccase, the pH, thermal and operational stabilities of the immobilized laccase were improved and the activity recovery of immobilized laccase reached 80.6%. Immobilized laccase retained 88.9% activity after 12 reaction cycles. Therefore, the cellulose-chitosan composite microspheres were expected to be a novel support for enzyme immobilization.


Asunto(s)
Celulosa/química , Quitosano/química , Enzimas Inmovilizadas/química , Lacasa/química , Nanopartículas de Magnetita/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Líquidos Iónicos , Microesferas , Temperatura
2.
Int J Biol Macromol ; 253(Pt 2): 126703, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673139

RESUMEN

Two low-methoxy pectins (LMPs) were obtained by local electrochemical pH modification using an H-type double-layer water bath sealed electrochemical cell at the voltage of 180 V for 3 h. The weight-average molecular weight (Mw) of citrus peel pectin (CPP) prepared in the anodic part at room temperature (CPP-A5/RT) and in the cathodic part at 5 °C (CPP-C5/RT) were 346 kDa and 328 kDa, respectively, and the degrees of methylation (DM) were 36.8 % and 11.9 %. Moreover, the second-order kinetic model was most appropriate for the degradation processes, as free radicals were generated in the anodic part and ß-elimination occurred in the cathodic part. Subsequently, CPP-A5/RT and CPP-C5/RT were utilized to fabricate food packaging film blending with polyvinyl alcohol (PVA), bcZnO (ZnO coupled with bentonite and colophony) nanorods, and Ca2+ ions by casting method. Then the prepared films were studied for their ability to maintain the freshness of strawberries. The addition of Ca2+ ions and bcZnO nanorods increased the thickness, water contact angle (WCA), and mechanical properties of the composite films, while decreased water vapor permeability (WVP). Therefore, the CPP-based films, supplemented with bcZnO nanorods and crosslinked with Ca2+ ions by "egg-box" model, can serve as an antibacterial food packaging material for food preservation.


Asunto(s)
Pectinas , Óxido de Zinc , Pectinas/farmacología , Pectinas/química , Alcohol Polivinílico/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Temperatura , Antibacterianos/farmacología , Antibacterianos/química , Embalaje de Alimentos/métodos , Concentración de Iones de Hidrógeno , Iones
3.
Int J Food Microbiol ; 381: 109910, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36063683

RESUMEN

Listeria monocytogenes, as a food-associated pathogen, is able to develop biofilms on different surfaces of food contact, which seriously threatens food safety. Phenyllactic acid (PLA) exhibits excellent inhibitory effects on many bacterial strains including L. monocytogenes. Our study aimed to investigate effects of PLA on L. monocytogenes biofilms and its growth in milk and on spiced beef. Biofilm biomass was measured by the microplate method and biofilm structure was observed by electron microscopy. Growth of L. monocytogenes in food samples was determined by colony counting. Results from the agar dilution method demonstrated that L. monocytogenes 10403S had a PLA minimum inhibitory concentration (MIC) value of 6 mg/ml. Sub-inhibitory concentrations of PLA could inhibit biofilm formation by reducing the secretion of exopolysaccharides and extracellular proteins in L. monocytogenes. PLA at concentrations above 1/2MIC could destroy mature biofilms of L. monocytogenes by decreasing the exopolysaccharides and extracellular proteins in the biofilm framework. Both swimming and swarming motilities of L. monocytogenes were inhibited by PLA. The hemolytic activity of L. monocytogenes was inactivated by PLA. However, the capacity to attach and invade Caco-2 cells was not affected by PLA. The results displayed that PLA had no effect on the expression of genes associated with motility, but reduced the expression level of the hly gene encoding Listeria hemolysin. When added to ultra-high temperature (UHT) whole and pasteurized milk, PLA at 3 mg/ml inhibited L. monocytogenes growth through 14 days of storage at 4 °C. PLA at concentrations ≥3 mg/ml significantly reduced L. monocytogenes counts on spiced beef samples during storage. PLA has potential as an alternative antimicrobial to control L. monocytogenes contamination and its biofilms in food industry.


Asunto(s)
Listeria monocytogenes , Agar/metabolismo , Animales , Biopelículas , Células CACO-2 , Bovinos , Proteínas Hemolisinas , Humanos , Lactatos , Leche/microbiología , Poliésteres/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA