Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466304

RESUMEN

We aimed to investigate the effects of chronic stress (CS) on experimental periodontitis (EP) in rats. For this, 28 Wistar rats were divided into four groups: control, ligature-induced experimental periodontitis (EP), chronic stress (CS; by physical restraint model) and CS+EP (association of chronic stress and ligature-induced periodontitis). The experimental period lasted 30 days, including exposure to CS every day and ligature was performed on the 15th experimental day. After 30 days, the animals were submitted to the behavioral test of the elevated plus maze (EPM). Next, rats were euthanized for blood and mandible collection in order to evaluate the oxidative biochemistry (by nitric oxide (NO), reduced-glutathione activity (GSH), and thiobarbituric acid reactive substance levels (TBARS)) and alveolar bone characterization (by morphometric, micro-CT, and immunohistochemistry), respectively. The behavioral parameters evaluated in EPM indicated higher anxiogenic activity in the CS and CS+EP, groups, which is a behavioral reflex of CS. The results showed that CS was able to change the blood oxidative biochemistry in CS and CS+EP groups, decrease GSH activity in the blood, and increase the NO and TBARS concentrations. Thus, CS induces oxidative blood imbalance, which can potentialize or generate morphological, structural, and metabolic damages to the alveolar bone.


Asunto(s)
Pérdida de Hueso Alveolar/patología , Estrés Oxidativo , Estrés Psicológico/sangre , Pérdida de Hueso Alveolar/sangre , Pérdida de Hueso Alveolar/complicaciones , Animales , Glutatión/sangre , Masculino , Ratas , Ratas Wistar , Estrés Psicológico/complicaciones , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
2.
Front Immunol ; 15: 1366954, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840914

RESUMEN

This systematic review aimed to verify whether there is evidence of an association between apical periodontitis and the presence of systemic biomarkers. This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses - PRISMA. For this, the acronym PECO was used; population (P) of adult humans exposed (E) to the presence of apical periodontitis, compared (C) to adult humans without apical periodontitis, and the outcome (O) of the presence of biomarkers was observed. The articles were searched in PubMed, Scopus, Web of Science, LILACS, Cochrane Library, OpenGray, and Google Scholar grey databases. Subsequently, studies were excluded based on title, abstract, and full article reading, following the eligibility criteria. The methodological quality of the selected studies was evaluated using the Newcastle-Ottawa qualifier. After exclusion, 656 studies were identified, resulting in 17 final articles that were divided into case-control, cross-sectional, and cohort studies. Eight studies were considered to have a low risk of bias, one had a medium risk of bias, and eight had a high risk of bias. In addition, 12 articles evaluated biomarkers in blood plasma, four evaluated them in saliva, and only one evaluated them in gingival crevicular fluid. The results of these studies indicated an association between apical periodontitis and the systemic presence of biomarkers. These markers are mainly related to inflammation, such as interleukins IL-1, IL-2, and IL-6, oxidative markers, such as nitric oxide and superoxide anions, and immunoglobulins IgG and IgM. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier (CRD42023493959).


Asunto(s)
Biomarcadores , Periodontitis Periapical , Humanos , Biomarcadores/sangre , Periodontitis Periapical/sangre , Periodontitis Periapical/metabolismo
3.
PLoS One ; 17(1): e0261252, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35085268

RESUMEN

BACKGROUND: Fluoride has become widely used in dentistry because of its effectiveness in caries control. However, evidence indicates that excessive intake interferes with the metabolic processes of different tissues. Thus, this study aimed to investigate the effects of long-term exposure to F on the parotid salivary gland of mice, from the analysis of oxidative, proteomic and genotoxic parameters. MATERIALS AND METHODS: The animals received deionized water containing 0, 10 or 50 mg/L of F, as sodium fluoride, for 60 days. After, parotid glands were collected for analysis of oxidative biochemistry, global proteomic profile, genotoxicity assessment and histopathological analyses. RESULTS: The results revealed that exposure to fluoride interfered in the biochemical homeostasis of the parotid gland, with increased levels of thiobarbituric acid reactive species and reduced glutathione in the exposed groups; as well as promoted alteration of the glandular proteomic profile in these groups, especially in structural proteins and proteins related to oxidative stress. However, genotoxic assessment demonstrated that exposure to fluoride did not interfere with DNA integrity in these concentrations and durations of exposure. Also, it was not observed histopathological alterations in parotid gland. CONCLUSIONS: Thus, our results suggest that long-term exposure to fluoride promoted modulation of the proteomic and biochemical profile in the parotid glands, without inducing damage to the genetic component. These findings reinforce the importance of rationalizing the use of fluorides to maximize their preventative effects while minimizing the environmental risks.


Asunto(s)
Glándula Parótida/metabolismo , Proteoma/efectos de los fármacos , Proteómica/métodos , Fluoruro de Sodio/efectos adversos , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Oxidación-Reducción , Glándula Parótida/efectos de los fármacos , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factores de Tiempo
4.
Biol Trace Elem Res ; 199(10): 3707-3717, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33409908

RESUMEN

The alveolar bone is an important mineralized structure of the periodontal support apparatus, and information about the methylmercury (MeHg) effects on the structural integrity is scarce. Therefore, this study aimed to investigate whether systemic, chronic, and low-dose exposure to MeHg can change the alveolar bone microstructure of rats. Adult Wistar rats (n = 30) were exposed to 0.04 mg/kg/day of MeHg or vehicle through intragastric gavage. The animals were euthanized after 60 days, and blood samples were collected for trolox equivalent antioxidant capacity (TEAC), glutathione (GSH), lipid peroxidation (LPO), and comet assays. The mandible of each animal was collected and separated into hemimandibles that were used to determine the total Hg level in the bone and to analyze microstructural damage and alveolar bone loss in terms of trabecular number (Tb.N), trabecular thickness (Tb.Th), bone volume fraction (BV/TV), and exposed root area of the second molars. MeHg exposure triggered oxidative stress in blood represented by lower levels of GSH and TEAC and the increase in LPO and DNA damage of the blood cells. High total Hg levels were found in the alveolar bone, and the microstructural analyses showed a reduction in Tb.N, Tb.Th, and BV/TV, which resulted in an increase in the exposed root area and a decrease in bone height. Long-term MeHg exposure promotes a systemic redox imbalance associated with microstructural changes and alveolar bone loss and may indicate a potential risk indicator for periodontal diseases.


Asunto(s)
Pérdida de Hueso Alveolar , Compuestos de Metilmercurio , Pérdida de Hueso Alveolar/inducido químicamente , Pérdida de Hueso Alveolar/diagnóstico por imagen , Animales , Mandíbula/diagnóstico por imagen , Compuestos de Metilmercurio/toxicidad , Estrés Oxidativo , Ratas , Ratas Wistar
5.
Front Pharmacol ; 12: 715394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646132

RESUMEN

Although fluoride (F) is well-known to prevent dental caries, changes in cell processes in different tissues have been associated with its excessive exposure. Thus, this study aimed to evaluate the effects of F exposure on biochemical, proteomic, and genotoxic parameters of submandibular glands. Twenty one old rats (n = 30) were allocated into three groups: 60 days administration of drinking water containing 10 mgF/L, 50 mgF/L, or only deionized water (control). The submandibular glands were collected for oxidative biochemistry, protein expression profile, and genotoxic potential analyses. The results showed that both F concentrations increased the levels of thiobarbituric acid-reactive substances (TBARS) and reduced glutathione (GSH) and changed the proteomic profile, mainly regarding the cytoskeleton and cellular activity. Only the exposure to 50 mgF/L induced significant changes in DNA integrity. These findings reinforce the importance of continuous monitoring of F concentration in drinking water and the need for strategies to minimize F intake from other sources to obtain maximum preventive/therapeutic effects and avoid potential adverse effects.

6.
Oxid Med Cell Longev ; 2019: 9187978, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31428231

RESUMEN

This systematic review with meta-analysis aimed to evaluate the effect of antioxidants as an adjuvant in periodontitis treatment. The following databases were consulted: PubMed, Scopus, Web of Science, Cochrane, Lilacs, OpenGrey, and Google Scholar. Based on the PICO strategy, the inclusion criteria comprised interventional studies including periodontitis patients (participants) treated with conventional therapy and antioxidants (intervention) compared to patients treated only with conventional therapy (control) where the periodontal response (outcome) was evaluated. The risk of bias was evaluated using the Cochrane RoB tool (for randomized studies) and ROBINS-I tool (for nonrandomized studies). Quantitative data were analyzed in five random effects meta-analyses considering the following periodontal parameters: clinical attachment loss (CAL), plaque index (PI), gingival index (GI), bleeding on probing (BOP), and probing depth (PD). After all, the level of certainty was measured with the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) tool. Among the 1884 studies identified, only 15 interventional studies were according to the eligibility criteria and they were included in our review. From them, 4 articles presented a high risk of bias. The meta-analysis showed a statistically significant difference for CAL (SMD 0.29 (0.04, 0.55), p = 0.03, I 2 = 13%), PI (SMD 0.41 (0.18, 0.64), p = 0.0005, I 2 = 47%), and BOP (SMD 0.55 (0.27, 0.83), p = 0.0001, I 2 = 0%). The GRADE tool showed a moderate to high certainty in the quality of evidence depending on the clinical parameter and antioxidants used. These results suggest that the use of antioxidants is an adjunct approach to nonsurgical periodontal therapy which may be helpful in controlling the periodontal status.


Asunto(s)
Antioxidantes/uso terapéutico , Periodontitis Crónica/tratamiento farmacológico , Catequina/análogos & derivados , Catequina/uso terapéutico , Periodontitis Crónica/patología , Bases de Datos Factuales , Hemorragia , Humanos , Índice Periodontal , Especies Reactivas de Oxígeno/metabolismo
7.
Oxid Med Cell Longev ; 2018: 8379123, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30224946

RESUMEN

The excessive fluoride (F) exposure is associated with damage to cellular processes of different tissue types, due to changes in enzymatic metabolism and breakdown of redox balance. However, few studies evaluate doses of F compatible with human consumption. Thus, this study evaluated the effects of chronic exposure to sodium fluoride (NaF) on peripheral blood of mice from the evaluation of biochemical parameters. The animals were divided into three groups (n = 10) and received three concentrations of NaF in the drinking water for 60 days: 0 mg/L F, 10 mg/L F, and 50 mg/L F. The blood was then collected for trolox equivalent antioxidant capacity (TEAC), thiobarbituric acid reactive substances (TBARS), concentrations of nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH). The results showed that doses of 10 mg/L F and 50 mg/L F were able to increase TBARS concentration and decrease NO levels and CAT activity in the blood, but there was no statistical difference for SOD levels. The 50 mg/L F group showed an increase in TEAC levels and a decrease in the GSH content when compared to the control group. In this way, oxidative changes in blood from chronic exposure to F, especially at the highest dose, indicate that F may be a toxic agent and, therefore, the long-term exposure to excessive doses should be avoided.


Asunto(s)
Circulación Sanguínea/fisiología , Fluoruro de Sodio/efectos adversos , Animales , Humanos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA