Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 206(8): 358, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033220

RESUMEN

Fungal keratitis is a severe corneal infection characterized by suppurative and ulcerative lesions. Aspergillus fumigatus is a common cause of fungal keratitis. Antifungal drugs, such as natamycin, are currently the first-line treatment for fungal keratitis, but their ineffectiveness leads to blindness and perforation. Additionally, the development of fungal resistance makes treating fungal keratitis significantly more challenging. The present study used platelet-derived biomaterial (PDB) to manage A. fumigatus keratitis in the animal model. Freezing and thawing processes were used to prepare PDB, and then A. fumigatus keratitis was induced in the mice. Topical administration of PDB, natamycin, and plasma was performed; quantitative real-time PCR (qPCR) and histopathologic examination (HE) were used to assess the inhibitory effect of the mentioned compounds against fungal keratitis. The qPCR results showed that PDB significantly decreased the count of A. fumigatus compared to the control group (P-value ≤ 5). Natamycin also remarkably reduced the count of fungi in comparison to the untreated animal, but its inhibitory effect was not better than PDB (P-value > 5). The findings of HE also demonstrated that treatment with PDB and natamycin decreased the fungal loads in the corneal tissue. However, plasma did not show a significant inhibitory effect against A. fumigatus. PDB is intrinsically safe and free of any infections or allergic responses; additionally, this compound has a potential role in decreasing the burden of A. fumigatus and treating fungal keratitis. Therefore, scientists should consider PDB an applicable approach to managing fungal keratitis and an alternative to conventional antifungal agents.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Queratitis , Aspergillus fumigatus/efectos de los fármacos , Animales , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ratones , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Modelos Animales de Enfermedad , Materiales Biocompatibles , Plaquetas/efectos de los fármacos , Natamicina/farmacología , Natamicina/administración & dosificación , Natamicina/uso terapéutico , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Córnea/microbiología , Córnea/patología , Córnea/efectos de los fármacos
2.
Ann Clin Microbiol Antimicrob ; 20(1): 40, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044843

RESUMEN

BACKGROUND AND AIM: Treatment of burn wound infections has become a global challenge due to the spread of multidrug-resistant bacteria; therefore, the development of new treatment options for the mentioned infections is essential. Platelets have drawn much attention for this purpose because they are a safe and cost-effective source of different antimicrobial peptides and growth factors. The present study evaluated antibacterial effects and wound healing properties of Platelet-derived Biomaterial (PdB) against Acinetobacter baumannii and Klebsiella pneumoniae burn wound infections. METHODS: PdB was prepared through the freezing and thawing process and then, in vitro antibacterial effect was determined by disk diffusion and broth microdilution methods. Afterward, burn wound was inflicted on 56 rats, infected with both bacteria, and topical administration was performed to evaluate antibacterial effects and wound healing properties of PdB. RESULTS: In vitro results showed that PdB inhibited the growth of A. baumannii in the highest dose (0.5), while we did not detect any inhibitory effects against K. pneumoniae. By contrast, PdB significantly inhibited the growth of bacteria in treated animal wounds compared to the control groups (P value < 0.05). Macroscopic assessments pointed to the significant enhancement of wound closure in the treated animals. In addition, histopathological examination demonstrated that treatment of rats with PdB led to a considerable increase in re-epithelialization and attenuated the formation of granulation tissue (P value < 0.05). CONCLUSION: The use of topical PdB is an attractive strategy for treating A. baumannii and K. pneumoniae burn wound infections because it inhibits bacterial growth and promotes wound healing properties.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/uso terapéutico , Extractos Celulares/uso terapéutico , Klebsiella pneumoniae/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Animales , Materiales Biocompatibles/uso terapéutico , Actividad Bactericida de la Sangre , Plaquetas/química , Quemaduras/tratamiento farmacológico , Quemaduras/microbiología , Pruebas Antimicrobianas de Difusión por Disco , Humanos , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Masculino , Ratas , Ratas Wistar
3.
Sci Rep ; 10(1): 1032, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974417

RESUMEN

We analyzed the potential antibacterial effects of two different PdB against methicillin-resistant S. aureus and P. aeruginosa. The third-degree burn wound healing effects of PdB was also studied. Blood samples were obtained from 10 healthy volunteers and biological assays of the PdB were performed and the antimicrobial activity against MRSA and P. aeruginosa was determined using disk diffusion (DD), broth microdilution (BMD), and time-kill assay methods. 48 Wistar albino rats were burned and infected with MRSA. Two groups were injected PdB, the control groups were treated with plasma and received no treatment respectively. In the next step, the rats were euthanized and skin biopsies were collected and histopathologic changes were examined. The results of DD and BMD showed that both PdB performed very well on MRSA, whereas P. aeruginosa was only inhibited by F-PdB and was less susceptible than MRSA to PdBs. The time-kill assay also showed that F-PdB has an antibacterial effect at 4 hours for two strains. Histopathological studies showed that the treated groups had less inflammatory cells and necrotic tissues. Our data suggest that PdB may possess a clinical utility as a novel topical antimicrobial and wound healing agent for infected burn wounds.


Asunto(s)
Antibacterianos/uso terapéutico , Plaquetas/química , Extractos Celulares/uso terapéutico , Cicatrización de Heridas/efectos de los fármacos , Infección de Heridas/tratamiento farmacológico , Animales , Materiales Biocompatibles/uso terapéutico , Quemaduras/tratamiento farmacológico , Quemaduras/microbiología , Pruebas Antimicrobianas de Difusión por Disco , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Ratas , Ratas Wistar , Infecciones Estafilocócicas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA