RESUMEN
The expression status of human epidermal growth factor receptor 2 (HER2) in cancer predicts response to HER2-targeted therapy. Therefore, its accurate determination is of utmost importance. In recent years, there has been an increase in research on noninvasive techniques for molecular imaging, as this method offers the advantages of a more accurate determination of HER2 status without the need for multiple biopsies. The technetium-labeled single-domain antibody RAD201, previously known as 99mTc-NM-02, has been shown to be safe for use in breast cancer imaging with reasonable radiation doses, favorable biodistribution, and imaging characteristics. METHODS: A total of six HER2-positive, heavily pretreated patients with different cancer types aged between 42 and 69 years (5 women and 1 man; the median age of 55.5) have been examined. In six of seven scans, the patients were administered 500 ml of Gelofusine® solution (40 mg/ml) for radiation protection before the tracer injection (434 ± 42 MBq). Planar scans were acquired with the patient supine at 10 min, 60 min, 160 min, 20 h, and 24 h after injection. A CT scan was acquired at 95 min, followed by local tomographic SPECT imaging. RESULTS: One patient was scanned twice with RAD201, 3 months apart, resulting in a total of seven scans for six patients. Here, we show that the use of RAD201 in our patient group shows the same favorable biodistribution as in a previous study with RAD201 (NCT04040686) and that the radiation dose to the critical organ kidney can be reduced by the application of the plasma expander Gelofusine® by almost 50%. CONCLUSION: RAD201 appears safe for use in humans and is a promising noninvasive tool for discriminating HER2 status in metastatic (breast) cancer, regardless of ongoing HER2-targeted antibody treatment.
Asunto(s)
Neoplasias de la Mama , Anticuerpos de Dominio Único , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anticuerpos de Dominio Único/metabolismo , Distribución Tisular , Poligelina/metabolismo , Tomografía Computarizada de Emisión de Fotón Único , Neoplasias de la Mama/patología , Tomografía Computarizada por Rayos XRESUMEN
Peptide receptor radionuclide therapy is used to treat solid tumors by locally delivering radiation. However, due to nephro- and hepato-toxicity, it is limited by its dosage. To amplify radiation damage to tumor cells, radiolabeled nanogels can be used. We show that by tuning the mechanical properties of nanogels significant enhancement in circulation half-life of the gel could be achieved. We demonstrate why and how small changes in the mechanical properties of the nanogels influence its cellular fate. Nanogels with a storage modulus of 37â kPa were minimally phagocytosed by monocytes and macrophages compared to nanogels with 93â kPa modulus. Using PET/CT a significant difference in the blood circulation time of the nanogels was shown. Computer simulations affirmed the results and predicted the mechanism of cellular uptake of the nanogels. Altogether, this work emphasizes the important role of elasticity even for particles that are inherently soft such as nano- or microgels.
Asunto(s)
Microgeles , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tiempo de Circulación Sanguínea , Elasticidad , NanogelesRESUMEN
Nanoparticles degradable upon external stimuli combine pharmacokinetic features of both small molecules as well as large nanoparticles. However, despite promising preclinical results, several redox responsive disulphide-linked nanoparticles failed in clinical translation, mainly due to their unexpected in vivo behavior. Glutathione (GSH) is one of the most evaluated antioxidants responsible for disulfide degradation. Herein, the impact of GSH on the in vivo behavior of redox-sensitive nanogels under physiological and modulated conditions is investigated. Labelling of nanogels with a DNA-intercalating dye and a radioisotope allows visualization of the redox responsiveness at the cellular and the systemic levels, respectively. In vitro, efficient cleavage of disulphide bonds of nanogels is achieved by manipulation of intracellular GSH concentration. While in vivo, the redox-sensitive nanogels undergo, to a certain extent, premature degradation in circulation leading to rapid renal elimination. This instability is modulated by transient inhibition of GSH synthesis with buthioninsulfoximin. Altered GSH concentration significantly changes the in vivo pharmacokinetics. Lower GSH results in higher elimination half-life and altered biodistribution of the nanogels with a different metabolite profile. These data provide strong evidence that decreased nanogel degradation in blood circulation can limit the risk of premature drug release and enhance circulation half-life of the nanogel.
Asunto(s)
Glutatión/química , Polietilenglicoles/química , Polietileneimina/química , Butionina Sulfoximina/química , Nanogeles , Oxidación-Reducción , Tomografía de Emisión de PositronesRESUMEN
Polymer mechanochemistry utilizes mechanical force to activate latent functionalities in macromolecules and widely relies on ultrasonication techniques. Fundamental constraints of frequency and power intensity have prohibited the application of the polymer mechanochemistry principles in a biomedical context up to now, although medical ultrasound is a clinically established modality. Here, a universal polynucleotide framework is presented that allows the binding and release of therapeutic oligonucleotides, both DNA- and RNA-based, as cargo by biocompatible medical imaging ultrasound. It is shown that the high molar mass, colloidal assembly, and a distinct mechanochemical mechanism enable the force-induced release of cargo and subsequent activation of biological function in vitro and in vivo. Thereby, this work introduces a platform for the exploration of biological questions and therapeutics development steered by mechanical force.
Asunto(s)
Polímeros , Polinucleótidos , Polinucleótidos/química , Polímeros/química , Animales , ADN/química , Humanos , Ratones , ARN/química , ARN/metabolismo , Fenómenos MecánicosRESUMEN
An efficient and simple synthesis approach to form stable (68) Ga-labeled nanogels is reported and their fundamental properties investigated. Nanogels are obtained by self-assembly of amphiphilic statistical prepolymers derivatised with chelating groups for radiometals. The resulting nanogels exhibit a well-defined spherical shape with a diameter of 290 ± 50 nm. The radionuclide (68) Ga is chelated in high radiochemical yields in an aqueous medium at room temperature. The phagocytosis assay demonstrates a highly increased internalization of nanogels by activated macrophages. Access to these (68) Ga-nanogels will allow the investigation of general behavior and clearance pathways of nanogels in vivo by nuclear molecular imaging.
Asunto(s)
Imagen Molecular/instrumentación , Polietilenglicoles/química , Polietileneimina/química , Radioisótopos de Galio/química , Humanos , Marcaje Isotópico , Macrófagos/química , Nanogeles , Polietilenglicoles/síntesis química , Polietileneimina/síntesis químicaRESUMEN
Neural stem cells (NSCs) present attractive natural drug delivery systems (DDSs). Their migratory potential enables crossing of the blood-brain barrier and efficient and selective accumulation near malignant cells. Here, we present the potential of NSCs as DDSs for nucleoside analogue-conjugated nanogels (NGs). Two different approaches were investigated: the intracellular loading and extracellular cell surface decoration with NGs. For both designs, the tumor-specific migratory potentials of NSCs remained unchanged; however, the intracellular loading showed a shorter NG retention. The cell surface decoration protocol yielded a high loading capacity of 100% after 1 h and a prolonged drug retention. A redox-sensitive linker between NGs and the nucleoside analogue 5-ethynyl-2'-deoxycytidine (EdC) allowed a tumor environment-specific drug release and its efficient and preferential incorporation into the DNA of the tumor cells. Interestingly, the tumor-trafficking potentials of NSCs were significantly potentiated by irradiation of tumor cells. In conclusion, this study indicates the potentials of cell surface-decorated NSCs as DDSs for tumor-specific release, cellular uptake, and incorporation of EdC into DNA.
Asunto(s)
Neoplasias , Células-Madre Neurales , Humanos , Nanogeles , Nucleósidos , Sistemas de Liberación de MedicamentosRESUMEN
The structural process of bone and periodontal ligament (PDL) remodeling during long-term orthodontic tooth movement (OTM) has not been satisfactorily described yet. Although the mechanism of bone changes in the directly affected alveolar bone has been deeply investigated, detailed knowledge about specific mechanism of PDL remodeling and its interaction with alveolar bone during OTM is missing. This work aims to provide an accurate and user-independent analysis of the alveolar bone and PDL remodeling following a prolonged OTM treatment in mice. Orthodontic forces were applied using a Ni-Ti coil-spring in a split-mouth mice model. After 5 weeks both sides of maxillae were scanned by high-resolution micro-CT. Following a precise tooth movement estimation, an extensive 3D analysis of the alveolar bone adjacent to the first molar were performed to estimate the morphological and compositional parameters. Additionally, changes of PDL were characterized by using a novel 3D model approach. Bone loss and thinning, higher connectivity as well as lower bone mineral density were found in both studied regions. Also, a non-uniformly widened PDL with increased thickness was observed. The extended and novel methodology in this study provides a comprehensive insight about the alveolar bone and PDL remodeling process after a long-duration OTM.
Asunto(s)
Ligamento Periodontal , Técnicas de Movimiento Dental , Ratones , Animales , Técnicas de Movimiento Dental/métodos , Ligamento Periodontal/diagnóstico por imagen , Remodelación ÓseaRESUMEN
The cellular and molecular mechanisms of orthodontic tooth movement (OTM) are not yet fully understood, partly due to the lack of dynamical datasets within the same subject. Inflammation and calcification are two main processes during OTM. Given the high sensitivity and specificity of [68Ga]Ga-Pentixafor and Sodium [18F]Fluoride (Na[18F]F) for inflammation and calcification, respectively, the aim of this study is to assess their ability to identify and monitor the dynamics of OTM in an established mouse model. To monitor the processes during OTM in real time, animals were scanned using a small animal PET/CT during week 1, 3, and 5 post-implantation, with [68Ga]Ga-Pentixafor and Na[18F]F. Both tracers showed an increased uptake in the region of interest compared to the control. For [68Ga]Ga-Pentixafor, an increased uptake was observed within the 5-week trial, suggesting the continuous presence of inflammatory markers. Na[18F]F showed an increased uptake during the trial, indicating an intensification of bone remodelling. Interim and end-of-experiment histological assessments visualised increased amounts of chemokine receptor CXCR4 and TRAP-positive cells in the periodontal ligament on the compression side. This approach establishes the first in vivo model for periodontal remodelling during OTM, which efficiently detects and monitors the intricate dynamics of periodontal ligament.
Asunto(s)
Radioisótopos de Galio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Complejos de Coordinación , Fluoruros , Inflamación , Ratones , Péptidos Cíclicos , Sodio , Técnicas de Movimiento DentalRESUMEN
INTRICATE is a prospective double-blind placebo-controlled feasibility study, assessing the influence of combined vitamin K2 and vitamin D3 supplementation on micro-calcification in carotid artery disease as imaged by hybrid Sodium [18F]Fluoride (Na[18F]F) positron emission tomography (PET)/ magnetic resonance imaging (MRI). Arterial calcification is an actively regulated process and results from the imbalance between calcification promoting and inhibiting factors. Considering the recent advancements in medical imaging, ultrasound (US), PET/MRI, and computed tomography (CT) can be used for the selection and stratification of patients with atherosclerosis. Fifty-two subjects with asymptomatic carotid artery disease on at least one side of the neck will be included in the study. At baseline, an Na[18F]F PET/MRI and CT examination will be performed. Afterwards, subjects will be randomized (1:1) to a vitamin K (400 µg MK-7/day) and vitamin D3 (80 µg/day) or to placebo. At the 3-month follow-up, subjects will undergo a second Na[18F]F PET/MRI and CT scan. The primary endpoint is the change in Na[18F]F PET/MRI (baseline vs. after 3 months) in the treatment group as compared to the placebo arm. Secondary endpoints are changes in plaque composition and in blood-biomarkers. The INTRICATE trial bears the potential to open novel avenues for future large scale randomized controlled trials to intervene in the plaque development and micro-calcification progression.
Asunto(s)
Enfermedades de las Arterias Carótidas/diagnóstico por imagen , Colecalciferol/farmacología , Suplementos Dietéticos , Tomografía de Emisión de Positrones/métodos , Vitamina K 2/farmacología , Aterosclerosis/tratamiento farmacológico , Calcinosis/diagnóstico por imagen , Calcinosis/tratamiento farmacológico , Enfermedades de las Arterias Carótidas/diagnóstico , Método Doble Ciego , Fluoruros , Estudios Prospectivos , Fluoruro de Sodio , Tomografía Computarizada por Rayos X , Vitamina K 2/uso terapéuticoRESUMEN
Despite profound advances in treatment approaches, gliomas remain associated with very poor prognoses. The residual cells after incomplete resection often migrate and proliferate giving a seed for highly resistant gliomas. The efficacy of chemotherapeutic drugs is often strongly limited by their poor selectivity and the blood brain barrier (BBB). Therefore, the development of therapeutic carrier systems for efficient transport across the BBB and selective delivery to tumor cells remains one of the most complex problems facing molecular medicine and nano-biotechnology. To address this challenge, a stimuli sensitive nanogel is synthesized using pre-polymer approach for the effective delivery of nano-irradiation. The nanogels are cross-linked via matrix metalloproteinase (MMP-2,9) substrate and armed with Auger electron emitting drug 5-[125 I]Iodo-4"-thio-2"-deoxyuridine ([125 I]ITdU) which after release can be incorporated into the DNA of tumor cells. Functionalization with diphtheria toxin receptor ligand allows nanogel transcytosis across the BBB at tumor site. Functionalized nanogels efficiently and increasingly explore transcytosis via BBB co-cultured with glioblastoma cells. The subsequent nanogel degradation correlates with up-regulated MMP2/9. Released [125 I]ITdU follows the thymidine salvage pathway ending in its incorporation into the DNA of tumor cells. With this concept, a highly efficient strategy for intracellular delivery of radiopharmaceuticals across the challenging BBB is presented.
Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos , Nanogeles , Péptido Hidrolasas , Radiofármacos , TranscitosisRESUMEN
PURPOSE: Since accurate diagnosis of inflammatory jaw diseases is still challenging, this study investigated the performance of three phase bone scintigraphy including SPECT/CT in the assessment of correct diagnosis and size of the affected bone tissue. METHOD: This retrospective study contained 31 patients with suspected jaw-related osteoradionecrosis, osteomyelitis or medication-related osteonecrosis of the jaw, which underwent 3-phase bone scintigraphy including SPECT/CT. Results were reviewed by two nuclear medicine physicians. Positive cases received surgery; negative ones were followed-up for six months. Both served as reference standard. Inflamed bone length was measured in the SPECT/CT images and postoperatively by a pathologist. RESULTS: 19 out of 20 positive cases and 10 out of 11 negative ones were classified correctly by SPECT/CT (sensitivity 95 %, specificity 91 %, accuracy 94 %, positive predictive value 95 %, negative predictive value 91 %). Regarding the length of affected bone, no significant difference (p = 0.23) could be observed between SPECT/CT and postoperative obtained values. Both correlated significantly (r = 0.86, p = 0.0001). CONCLUSION: SPECT/CT can safely detect different kinds of inflammatory jaw pathologies compared to other conventional imaging modalities. Lack of specificity of conventional scintigraphy ranging from 17 % to 71 % in earlier studies could be improved by adding CT-analysis. Additionally, SPECT/CT assists the surgeon in determining the expansion of the process (with focus on the length) preoperatively and thereby optimizing surgery planning.