Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 13(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39199990

RESUMEN

This study evaluates the dynamic shift in the microbiota at the peri-implant site of titanium (Ti) and zirconia (Zr) implants subjected to experimental peri-implantitis (PI) and, for the first time, of implants made of ceria-stabilized alumina-reinforced zirconia (Ce-TZP/Al), a revolutionary zirconia that is set to play a key role in modern implant dentistry. One- and two-piece (TP) implants, including Ce-TZP/AL TP/G3 glass, were placed bilaterally (six implants/side) in five beagle dogs to mimic a natural vs. ligature-induced PI following a split-mouth design. The experiment spanned 30 weeks from tooth extraction. Both PI models promoted plaque deposition at peri-implant sites. Comparatively, the PI induced by ligatures favored the deposition of anaerobes (p = 0.047 vs. natural). Regardless of the model, the plaque deposition pattern was entirely dependent on the implanted material. Ligated Ti and Zr implant sites accumulated up to 2.14 log CFU/mL unit anaerobic load (p ≤ 0.033 vs. non-ligated implant sites), predominantly comprising obligate anaerobes. Naturally occurring PI induced the deposition of co-occurring networks of obligate anaerobes and less oxygen-dependent bacteria. PI induction favored the enrichment of Ti and Zr sites with bacterial taxa belonging to the orange and red complexes (up to 28% increase naturally and up to 71% in the ligated hemiarch). Anaerobic deposition was significantly lower in ligated Ce-TZP/Al implant sites (p ≤ 0.014 vs. TI and Zr) and independent of the induction model (0.63-1 log units of increase). Facultative bacteria prevailed at Ce-TZP/AL sites. The abundance was lower in the Ce-TZP/AL TP implant. Unlike Ti and Zr sites, taxa from the orange and red complexes were negligible. Biofilms configured at the Ti and Zr sites after ligation-induced PI resemble those found in severe IP. We hypothesize that, although surface properties (surface energy and surface roughness) and physicochemical properties of the substrate play an important role in bacterial adhesion and subsequent plaque formation, Ce-TZP/Al modulates several biological activities that preserve the integrity of the gingival seal by limiting PI progression. In conclusion, biofilm progression differs in peri-implant sites according to the specific properties of the material. Ce-TZP/A, unlike titanium or zirconia, prevents dysbiosis in sites subjected to experimental PI and preserves the microbial signature of emergent obligate anaerobes related to PI development.

2.
Antibiotics (Basel) ; 10(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34680764

RESUMEN

Current endodontic procedures continue to be unsuccessful for completely removing pathogens present inside the root canal system, which can lead to recurrent infections. In this study, we aimed to assess the antimicrobial capacity and tissue response of two inorganic bactericidal additives incorporated into a paste root canal sealer on contaminated root dentin in vivo. An experimental study was performed in 30 teeth of five Beagle dogs. After inducing microbiological contamination, root canal systems were treated by randomly incorporating one of two antimicrobial additives into a commercial epoxy-amine resin sealer (AH Plus), i.e., G3T glass-ceramic (n = 10) and ZnO-enriched glass (n = 10); 10 samples were randomized as a control group. After having sacrificed the animals, microbiological, radiological, and histological analyses were performed, which were complemented with an in vitro bactericidal test and characterization by field emission scanning electron microscopy. The tested groups demonstrated a non-significant microbiological reduction in the postmortem periapical index values between the control group and the bactericidal glass-ceramic group (p = 0.885), and between the control group and the ZnO-enriched glass group (p = 0.169). The histological results showed low values of inflammatory infiltrate, and a healing pattern characterized by fibrosis in 44.4% of the G3T glass-ceramic and 60.0% of ZnO-enriched glass. Bactericidal glassy additives incorporated in this root canal sealer are safe and effective in bacterial reduction.

3.
PLoS One ; 10(7): e0132709, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26230940

RESUMEN

A new family of non-toxic biocides based on low melting point (1250°C) transparent glasses with high content of ZnO (15-40wt%) belonging to the miscibility region of the B2O3-SiO2-Na2O-ZnO system has been developed. These glasses have shown an excellent biocide activity (logarithmic reduction >3) against Gram- (E. coli), Gram+ (S. aureus) and yeast (C. krusei); they are chemically stable in different media (distilled water, sea-like water, LB and DMEN media) as well as biocompatible. The cytotoxicity was evaluated by the Neutral Red Uptake using NIH-3T3 (mouse embryonic fibroblast cells) and the cell viability was >80%. These new glasses can be considered in several and important applications in the field of inorganic non-toxic biocide agents such as medical implants, surgical equipment, protective apparels in hospitals, water purifications systems, food packaging, food storages or textiles.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Materiales Biocompatibles/farmacología , Vidrio/química , Óxido de Zinc/farmacología , Candida/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
4.
PLoS One ; 10(10): e0140374, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26489088

RESUMEN

OBJECTIVES: The aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss. METHODS: Mandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period. RESULTS: During experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42). SIGNIFICANCE: Antimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.


Asunto(s)
Pérdida de Hueso Alveolar/prevención & control , Antiinfecciosos/farmacología , Biopelículas/crecimiento & desarrollo , Implantación Dental Endoósea/métodos , Periimplantitis/prevención & control , Animales , Bacterias/crecimiento & desarrollo , Diente Premolar/cirugía , Biopelículas/efectos de los fármacos , Compuestos de Calcio/farmacología , Pilares Dentales/microbiología , Implantación Dental Endoósea/efectos adversos , Implantes Dentales/efectos adversos , Placa Dental/microbiología , Diseño de Prótesis Dental , Perros , Vidrio/química , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Modelos Animales , Oseointegración , Óxidos/farmacología , Plata/farmacología , Hidróxido de Sodio/farmacología , Propiedades de Superficie , Levaduras/crecimiento & desarrollo , Óxido de Zinc/análogos & derivados , Óxido de Zinc/farmacología
5.
PLoS One ; 7(8): e42393, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22879961

RESUMEN

This paper reports the effect of soda-lime-glass-nAg coating on the viability of an in vitro biofilm of Streptococcus oralis. Three strains (ATCC 35037 and two clinical isolates from periodontitis patients) were grown on coated with glass, glass containing silver nanoparticles, and uncoated titanium alloy disks. Two different methods were used to quantify biofilm formation abilities: crystal violet staining and determination of viable counts. The influence of the surface morphology on the cell attachment was studied. The surface morphology was characterized by scanning electron microscopy (SEM) and using a profilometer. SEM was also used to study the formation and the development of biofilm on the coated and uncoated disks. At least a >99.7% inocula reduction of biofilm respect to titanium disks and also to glass coated disks was observed in the glass-nAg coated disks for all the studied strains. A quantitative evaluation of the release of silver was conducted in vitro to test whether and to what extend the biocidal agent (silver) could leach from the coating. These findings suggest that the biofilm formation of S. oralis strains is highly inhibited by the glass-nAg and may be useful for materials which require durable antibacterial effect on their surfaces, as it is the case of dental implants.


Asunto(s)
Biopelículas/efectos de los fármacos , Compuestos de Calcio/farmacología , Vidrio/química , Nanopartículas del Metal/química , Óxidos/farmacología , Plata/farmacología , Hidróxido de Sodio/farmacología , Streptococcus oralis/fisiología , Titanio/farmacología , Aleaciones , Adhesión Bacteriana/efectos de los fármacos , Violeta de Genciana , Humanos , Nanopartículas del Metal/ultraestructura , Plancton/efectos de los fármacos , Coloración y Etiquetado , Streptococcus oralis/efectos de los fármacos , Streptococcus oralis/ultraestructura , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA