Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(7): 2927-2937, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36926930

RESUMEN

Electrotherapy is a promising tissue repair technique. However, electrotherapy devices are frequently complex and must be placed adjacent to injured tissue, thereby limiting their clinical application. Here, we propose a general strategy to facilitate tissue repair by modulating endogenous electric fields with nonadjacent (approximately 44 mm) wireless electrotherapy through a 3D-printed entirely soft and bioresorbable triboelectric nanogenerator based stimulator, without any electrical accessories, which has biomimetic mechanical properties similar to those of soft tissue. In addition, the feasibility of using the stimulator to construct an electrical double layer with tissue for nonadjacent wireless electrotherapy was demonstrated by skin and muscle injury models. The treated groups showed significantly improved tissue repair compared with the control group. In conclusion, we developed a promising electrotherapy strategy and may inspire next-generation electrotherapy for tissue repair.


Asunto(s)
Implantes Absorbibles , Polímeros , Electricidad , Cicatrización de Heridas , Impresión Tridimensional
2.
Molecules ; 25(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167598

RESUMEN

Polyethylene (PE) is one the most used plastics worldwide for a wide range of applications due to its good mechanical and chemical resistance, low density, cost efficiency, ease of processability, non-reactivity, low toxicity, good electric insulation, and good functionality. However, its high flammability and rapid flame spread pose dangers for certain applications. Therefore, different flame-retardant (FR) additives are incorporated into PE to increase its flame retardancy. In this review article, research papers from the past 10 years on the flame retardancy of PE systems are comprehensively reviewed and classified based on the additive sources. The FR additives are classified in well-known FR families, including phosphorous, melamine, nitrogen, inorganic hydroxides, boron, and silicon. The mechanism of fire retardance in each family is pinpointed. In addition to the efficiency of each FR in increasing the flame retardancy, its impact on the mechanical properties of the PE system is also discussed. Most of the FRs can decrease the heat release rate (HRR) of the PE products and simultaneously maintains the mechanical properties in appropriate ratios. Based on the literature, inorganic hydroxide seems to be used more in PE systems compared to other families. Finally, the role of nanotechnology for more efficient FR-PE systems is discussed and recommendations are given on implementing strategies that could help incorporate flame retardancy in the circular economy model.


Asunto(s)
Retardadores de Llama , Nanocompuestos/química , Polietileno/química , Boro/química , Calor , Hidróxidos/química , Compuestos Inorgánicos , Microscopía Electrónica de Rastreo , Nanotecnología , Nitrógeno/química , Oxígeno/química , Fósforo/química , Polímeros/química , Silicio/química , Triazinas/química
3.
Int J Biol Macromol ; 263(Pt 1): 130296, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382792

RESUMEN

Despite the advantages of topical administration in the treatment of skin diseases, current marketed preparations face the challenge of the skin's barrier effect, leading to low therapeutic effectiveness and undesirable side effects. Hence, in recent years the management of skin wounds, the main morbidity-causing complication in hospital environments, and atopic dermatitis, the most common inflammatory skin disease, has become a great concern. Fortunately, new, more effective, and safer treatments are already under development, with chitosan, starch, silk fibroin, agarose, hyaluronic acid, alginate, collagen, and gelatin having been used for the development of nanoparticles, liposomes, niosomes and/or hydrogels to improve the delivery of several molecules for the treatment of these diseases. Biocompatibility, biodegradability, increased viscosity, controlled drug delivery, increased drug retention in the epidermis, and overall mitigation of adverse effects, contribute to an effective treatment, additionally providing intrinsic antimicrobial and wound healing properties. In this review, some of the most recent success cases of biopolymer-based drug delivery systems as part of nanocarriers, semi-solid hydrogel matrices, or both (hybrid systems), for the management of skin wounds and atopic dermatitis, are critically discussed, including composition and in vitro, ex vivo and in vivo characterization, showing the promise of these external drug delivery systems.


Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/tratamiento farmacológico , Cicatrización de Heridas , Sistemas de Liberación de Medicamentos , Biopolímeros/farmacología , Colágeno/farmacología , Hidrogeles/farmacología , Liposomas/farmacología
4.
Int J Biol Macromol ; 269(Pt 1): 132086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705321

RESUMEN

Injectable hydrogels based on biopolymers, fabricated utilizing diverse chemical and physical methodologies, exhibit exceptional physical, chemical, and biological properties. They have multifaceted applications encompassing wound healing, tissue regeneration, and across diverse scientific realms. This review critically evaluates their largely uncharted potential in ophthalmology, elucidating their diverse applications across an array of ocular diseases. These conditions include glaucoma, cataracts, corneal disorders (spanning from age-related degeneration to trauma, infections, and underlying chronic illnesses), retina-associated ailments (such as diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration (AMD)), eyelid abnormalities, and uveal melanoma (UM). This study provides a thorough analysis of applications of injectable hydrogels based on biopolymers across these ocular disorders. Injectable hydrogels based on biopolymers can be customized to have specific physical, chemical, and biological properties that make them suitable as drug delivery vehicles, tissue scaffolds, and sealants in the eye. For example, they can be engineered to have optimum viscosity to be injected intravitreally and sustain drug release to treat retinal diseases. Their porous structure and biocompatibility promote cellular infiltration to regenerate diseased corneal tissue. By accentuating their indispensable role in ocular disease treatment, this review strives to present innovative and targeted approaches in this domain, thereby advancing ocular therapeutics.


Asunto(s)
Oftalmopatías , Hidrogeles , Hidrogeles/química , Humanos , Biopolímeros/química , Oftalmopatías/tratamiento farmacológico , Animales , Sistemas de Liberación de Medicamentos , Inyecciones , Materiales Biocompatibles/química
5.
Adv Sci (Weinh) ; 9(13): e2105146, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35212474

RESUMEN

Biodegradable electronics are considered as an important bio-friendly solution for electronic waste (e-waste) management, sustainable development, and emerging implantable devices. Elastic electronics with higher imitative mechanical characteristics of human tissues, have become crucial for human-related applications. The convergence of biodegradability and elasticity has emerged a new paradigm of next-generation electronics especially for wearable and implantable electronics. The corresponding biodegradable elastic materials are recognized as a key to drive this field toward the practical applications. The review first clarifies the relevant concepts including biodegradable and elastic electronics along with their general design principles. Subsequently, the crucial mechanisms of the degradation in polymeric materials are discussed in depth. The diverse types of biodegradable elastomers and gels for electronics are then summarized. Their molecular design, modification, processing, and device fabrication especially the structure-properties relationship as well as recent advanced are reviewed in detail. Finally, the current challenges and the future directions are proposed. The critical insights of biodegradability and elastic characteristics in the elastomers and gel allows them to be tailored and designed more effectively for electronic applications.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Electrónica , Geles , Humanos , Polímeros
6.
ACS Nano ; 16(10): 16954-16965, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36125071

RESUMEN

Self-powered information encoding devices (IEDs) have drawn considerable interest owing to their capability to process information without batteries. Next-generation IEDs should be reprogrammable, self-healing, and wearable to satisfy the emerging requirements for multifunctional IEDs; however, such devices have not been demonstrated. Herein, an integrated triboelectric nanogenerator-based IED with the aforementioned features was developed based on the designed light-responsive high-permittivity poly(sebacoyl diglyceride-co-4,4'-azodibenzoyl diglyceride) elastomer (PSeDAE) with a triple-shape-memory effect. The electrical memory feature was achieved through a microscale shape-memory property, enabling spatiotemporal information reprogramming for the IED. Macroscale shape-memory behavior afforded the IED shape-reprogramming ability, yielding wearable and detachable features. The dynamic transesterifications and light-heating groups in the PSeDAE afforded a remotely controlled rearrangement of its cross-linking network, producing the self-healing IED.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Diglicéridos , Suministros de Energía Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA