Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30177601

RESUMEN

Desalination by pervaporation is a membrane process that is yet to be realized for commercial application. To investigate the feasibility and viability of scaling up, a process engineering model was developed to evaluate the energy requirement based on the experimental study of a hybrid polyvinyl alcohol/maleic acid/tetraethyl orthosilicate (PVA/MA/TEOS) Pervaporation Membrane. The energy consumption includes the external heating and cooling required for the feed and permeate streams, as well as the electrical power associated with pumps for re-circulating feed and maintaining vacuum. The thermal energy requirement is significant (e.g., up to 2609 MJ/m³ of thermal energy) and is required to maintain the feed stream at 65 °C in recirculation mode. The electrical energy requirement is very small (<0.2 kWh/m³ of required at 65 °C feed temperature at steady state) with the vacuum pump contributing to the majority of the electrical energy. The energy required for the pervaporation process was also compared to other desalination processes such as Reverse Osmosis (RO), Multi-stage Flash (MSF), and Multiple Effect Distillation (MED). The electrical energy requirement for pervaporation is the lowest among these desalination technologies. However, the thermal energy needed for pervaporation is significant. Pervaporation may be attractive when the process is integrated with waste heat and heat recovery option and used in niche applications such as RO brine concentration or salt recovery.


Asunto(s)
Técnicas de Química Analítica , Membranas Artificiales , Cloruro de Sodio/aislamiento & purificación , Purificación del Agua/economía , Purificación del Agua/métodos , Técnicas de Química Analítica/economía , Estudios de Factibilidad , Maleatos/química , Modelos Teóricos , Alcohol Polivinílico/química , Silanos/química , Temperatura
2.
Water Res ; 130: 343-352, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29248804

RESUMEN

Colloidal silica involved fouling behaviors in direct contact membrane distillation (DCMD), vacuum membrane distillation (VMD) and sweeping gas membrane distillation (SGMD) were studied. Three foulants were used in the experiments, including colloidal silica as representative of particulate foulants, calcium bicarbonate as dissolved inorganic foulant, and NOM (humic acid + alginate + BSA) as the dissolved organic foulant. The three types of fouants were combined to produce four different feed waters: silica alone; silica + calcium bicarbonate; silica + NOM; and silica + calcium bicarbonate + NOM. With 25% feed recovery, it was found that VMD showed the worst performance for most of the foulant combinations due to turbulence dead zones caused by the membrane deformation that increased foulant deposition. For the silica + calcium bicarbonate + NOM feed DCMD had the greatest fouling rate, although DCMD also had the highest flux of all configurations. SGMD showed the best fouling resistance of all configurations, although it was inclined to calcium carbonate fouling because carbon dioxide was removed in the permeate leading to calcium carbonate precipitation and could be alleviated by using air as sweeping gas. For feeds containing high-concentration calcium bicarbonate or carbonate foulants, VMD should be avoided to lower the formation of carbonate precipitants on the membrane surface if scale inhibitors are not used.


Asunto(s)
Destilación/instrumentación , Membranas Artificiales , Dióxido de Silicio/química , Alginatos/química , Bicarbonatos/química , Destilación/métodos , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Sustancias Húmicas , Politetrafluoroetileno
3.
ChemSusChem ; 10(9): 1887-1891, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28349608

RESUMEN

To minimize energy consumption and carbon footprints, pervaporation membranes are fast becoming the preferred technology for alcohol recovery. However, this approach is confined to small-scale operations, as the flux of standard rubbery polymer membranes remain insufficient to process large solvent volumes, whereas membrane separations that use glassy polymer membranes are prone to physical aging. This study concerns how the alcohol affinity and intrinsic porosity of networked, organic, microporous polymers can simultaneously reduce physical aging and drastically enhance both flux and selectivity of a super glassy polymer, poly-[1-(trimethylsilyl)propyne] (PTMSP). Slight loss in alcohol transportation channels in PTMSP is compensated by the alcohol affinity of the microporous polymers. Even after continuous exposure to aqueous solutions of alcohols, PTMSP pervaporation membranes loaded with the microporous polymers outperform the state-of-the-art and commercial pervaporation membranes.


Asunto(s)
Biocombustibles , Etanol/aislamiento & purificación , Membranas Artificiales , Polímeros/química , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA