Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Environ Manage ; 351: 119988, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38181686

RESUMEN

Microplastics are found ubiquitous in the natural environment and are an increasing source of worry for global health. Rapid industrialization and inappropriate plastic waste management in our daily lives have resulted in an increase in the amount of microplastics in the ecosystem. Microplastics that are <150 µm in size could be easily ingested by living beings and cause considerable toxicity. Microplastics can aggregate in living organisms and cause acute, chronic, carcinogenic, developmental, and genotoxic damage. As a result, a sustainable approach to reducing, reusing, and recycling plastic waste is required to manage microplastic pollution in the environment. However, there is still a significant lack of effective methods for managing these pollutants. As a result, the purpose of this review is to convey information on microplastic toxicity and management practices that may aid in the reduction of microplastic pollution. This review further insights on how plastic trash could be converted as value-added products, reducing the load of accumulating plastic wastes in the environment, and leading to a beneficial endeavor for humanity.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Ecosistema , Contaminación Ambiental/prevención & control , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
2.
J Environ Sci (China) ; 146: 198-216, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969448

RESUMEN

Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.


Asunto(s)
Filtración , Membranas Artificiales , Purificación del Agua , Purificación del Agua/métodos , Filtración/métodos , Virus , COVID-19 , SARS-CoV-2 , Microbiología del Agua
3.
J Environ Sci (China) ; 146: 304-317, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969460

RESUMEN

A biochar-assisted anaerobic membrane bioreactor (BC-AnMBR) was conducted to evaluate the performance in treating swine wastewater with different organic loading rates (OLR) ranging from 0.38 to 1.13 kg-COD/(m3.d). Results indicated that adding spent coffee grounds biochar (SCG-BC) improved the organic removal efficiency compared to the conventional AnMBR, with an overall COD removal rate of > 95.01%. Meanwhile, methane production of up to 0.22 LCH4/gCOD with an improvement of 45.45% was achieved under a high OLR of 1.13 kg-COD/(m3.d). Furthermore, the transmembrane pressure (TMP) in the BC-AnMBR system was stable at 4.5 kPa, and no irreversible membrane fouling occurred within 125 days. Microbial community analysis revealed that the addition of SCG-BC increased the relative abundance of autotrophic methanogenic archaea, particularly Methanosarcina (from 0.11% to 11.16%) and Methanothrix (from 16.34% to 24.05%). More importantly, Desulfobacterota and Firmicutes phylum with direct interspecific electron transfer (DIET) capabilities were also enriched with autotrophic methanogens. Analysis of the electron transfer pathway showed that the concentration of c-type cytochromes increased by 38.60% in the presence of SCG-BC, and thus facilitated the establishment of DIET and maintained high activity of the electron transfer system even at high OLR. In short, the BC-AnMBR system performs well under various OLR conditions and is stable in the recovery energy system for swine wastewater.


Asunto(s)
Reactores Biológicos , Carbón Orgánico , Eliminación de Residuos Líquidos , Aguas Residuales , Animales , Aguas Residuales/química , Carbón Orgánico/química , Porcinos , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Membranas Artificiales , Metano/metabolismo
4.
Water Sci Technol ; 85(11): 3196-3207, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35704405

RESUMEN

Fluorine is one of the essential trace elements for human life activities, but excessive intake of fluoride poses a great risk to people's health. In this paper, a series of mixed matrix membrane (MMM)-based polysulfone for removing fluoride were prepared by phase inversion, and their properties, adsorption capacity, adsorption isotherms, adsorption kinetics of fluoride ions, and mechanism were all investigated. The results confirmed that the MMM contained a large number of hydroxyl and aluminum functional groups due to resin being added. The MMM exhibited the best fluorine ion adsorption capacity of 2.502 mg/g at a pH of 6 with the initial concentration of 6 mg/L. As well, adsorption kinetics of fluorine ion on MMM followed the pseudo-second-order model, while the adsorption behavior of fluorine ion on MMM was well simulated by the Langmuir isotherm model. The adsorption capacity of MMM remained stable after six cycles and the regeneration efficiency was still above 80%, resulting in a long-term stability adequate for fluorine ion removal. Complexation and ion exchange played a key role in the fluorine ion adsorption of MMM. These results indicated the MMM as novel type of absorbent had an excellent capacity for removing fluoride.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Fluoruros , Flúor , Humanos , Concentración de Iones de Hidrógeno , Cinética , Polímeros , Sulfonas , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
5.
J Environ Sci (China) ; 75: 73-83, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30473309

RESUMEN

The effects of powdered activated carbon (PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor (DMBR) were investigated to explore the enhancement mechanism of pollutants removal and filtration performance. Sludge properties were analyzed through various analytical measurements. The results showed that the improved sludge aggregation ability and the evolution of microbial communities affected sludge morphology in PAC-DMBR, as evidenced by the formation of large, regularly shaped and strengthened sludge flocs. The modifications of sludge characteristics promoted the formation process and filtration flux of the dynamic membrane (DM) layer. Additionally, PAC addition did not exert very significant influence on the propagation of eukaryotes (protists and metazoans) and microbial metabolic activity. High-throughput pyrosequencing results indicated that adding PAC improved the bacterial diversity in activated sludge, as PAC addition brought about additional microenvironment in the form of biological PAC (BPAC), which promoted the enrichment of Acinetobacter (13.9%), Comamonas (2.9%), Flavobacterium (0.31%) and Pseudomonas (0.62%), all contributing to sludge flocs formation and several (such as Acinetobacter) capable of biodegrading relatively complex organics. Therefore, PAC addition could favorably modify sludge properties from various aspects and thus enhance the DMBR performance.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos Líquidos/métodos , Bacterias , Biodegradación Ambiental , Carbón Orgánico , Filtración/métodos , Membranas Artificiales , Aguas del Alcantarillado/microbiología , Aguas Residuales
6.
Water Sci Technol ; 72(5): 689-95, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26287826

RESUMEN

The effects of poly aluminum chloride (PACl) dosing positions on the performance of a pilot scale anoxic/oxic membrane bioreactor were investigated. PACl dosage was optimized at 19.5 mg Al2O3/L by jar test. Nutrients removal efficiencies and sludge properties were systematically investigated during periods with no PACl dosing (phase I), with PACl dosing in oxic tank (phase II) and then in anoxic tank (phase III). The results showed that total phosphorus removal efficiency increased from 18 to 88% in phase II and 85% in phase III with less than 0.5 mg P/L in effluent. Ammonia nitrogen removal efficiencies reached 99% in all phases and chemical oxygen demand removal efficiencies reached 92%, 91% and 90% in the three phases, respectively. Total nitrogen removal efficiency decreased from 59% in phase I to 49% in phases II and III. Dosing PACl in the oxic tank resulted in smaller sludge particle size, higher zeta potential, better sludge settleability and lower membrane fouling rate in comparison with dosing PACl in the anoxic tank.


Asunto(s)
Compuestos de Aluminio , Reactores Biológicos , Cloruros , Purificación del Agua , Cloruro de Aluminio , Incrustaciones Biológicas , Análisis de la Demanda Biológica de Oxígeno , Membranas Artificiales , Nitrógeno/aislamiento & purificación , Fósforo/aislamiento & purificación , Proyectos Piloto , Aguas del Alcantarillado
7.
Biofouling ; 30(1): 105-14, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24266629

RESUMEN

The effects of low-concentration Cr(VI) (0.4 mg l(-1)) on the performance of a submerged membrane bioreactor (SMBR) in the treatment of municipal wastewater, as well as membrane fouling were investigated. Compared with the SMBR for control municipal wastewater, the SMBR for Cr(VI)-containing municipal wastewater had a higher concentration of soluble microbial products (SMP) with lower molecular weights, and smaller sludge particle sizes. Furthermore, low-concentration Cr(VI) induced membrane fouling, especially irreversible membrane pore blocking, which markedly shortened the service life of the membrane.


Asunto(s)
Antiinfecciosos/farmacología , Incrustaciones Biológicas/prevención & control , Reactores Biológicos , Cromo/farmacología , Aguas Residuales/microbiología , Membranas Artificiales , Tamaño de la Partícula , Espectroscopía Infrarroja por Transformada de Fourier
8.
Water Res ; 250: 121057, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38157601

RESUMEN

Extracellular polymeric substances (EPS) regulated by quorum sensing (QS) could directly mediate adhesion between microorganisms and form tight microbial aggregates. Besides, EPS have redox properties, which can facilitate electron transfer for promoting electroactive bacteria. Currently, the applications research on improving wastewater biological treatment performance based on QS regulated EPS have been widely reported, but reviews on the level of QS regulated EPS to enhance EPS function in microbial systems are still lacking. This work proposes the potential mechanisms of EPS synthesis by QS regulation from the viewpoint of material metabolism and energy metabolism, and summarizes the effects of QS on EPS synthesis. By synthesizing the role of QS in EPS regulation, we further point out the applications of QS-regulated EPS in wastewater biological treatment, which involve a series of aspects such as strengthening microbial colonization, mitigating membrane biofouling, improving the shock resistance of microbial metabolic systems, and strengthening the electron transfer capacity of microbial metabolic systems. According to this comprehensive review, future research on QS-regulated EPS should focus on the exploration of the micro-mechanisms, and economic regulation strategies for QS-regulated EPS should be developed, while the stability of QS-regulated EPS in long-term production experimental research should be further demonstrated.


Asunto(s)
Percepción de Quorum , Aguas Residuales , Polímeros , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología
9.
Bioresour Technol ; 409: 131267, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39142417

RESUMEN

Membrane aerated biofilm reactor (MABR) is challenged by biofilm thickness control and phosphorus removal. Air scouring aided by computational fluid dynamics (CFD) was employed to detach outer biofilm in sequencing batch MABR treating low C/N wastewater. Biofilm with 177-285 µm thickness in cycle 5-15 achieved over 85 % chemical oxygen demand (COD) and total inorganic nitrogen (TIN) removals at loading rate of 13.2 gCOD/m2/d and 2.64 gNH4+-N/m2/d. Biofilm rheology measurements in cycle 10-25 showed yield stress against detachment of 2.8-7.4 Pa, which were equal to CFD calculated shear stresses under air scouring flowrate of 3-9 L/min. Air scouring reduced effluent NH4+-N by 10 % and biofilm thickness by 78 µm. Intermittent aeration (4h off, 19.5h on) and air scouring (3 L/min, 30 s before settling) in one cycle achieved COD removal over 90 %, TIN and PO43--P removals over 80 %, showing great potential for simultaneous carbon, nitrogen and phosphorus removals.


Asunto(s)
Biopelículas , Reactores Biológicos , Carbono , Hidrodinámica , Membranas Artificiales , Nitrógeno , Fósforo , Aire , Análisis de la Demanda Biológica de Oxígeno , Purificación del Agua/métodos , Simulación por Computador , Reología , Aguas Residuales/química
10.
Chemosphere ; 362: 142743, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950740

RESUMEN

For the first time, a hyper-thermophilic aerobic (>60 °C) bioreactor has been integrated with direct submerged membrane distillation (MD), highlighting its potential as an advanced wastewater treatment solution. The hyper-thermophilic aerobic bioreactor, operating up to 65 °C, is tailored for high organic removal, while MD efficiently produces clean water. Throughout the study, high removal rates of 99.5% for organic matter, 96.4% for ammonia, and 100% for phosphorus underscored the impressive adaptability of microorganisms to challenging hyper-thermophilic conditions and a successful combination with the MD process. Despite the extreme temperatures and substantial salinity accumulation reaching up to 12,532 µS/cm, the biomass of microorganisms increased by 1.6 times over a 92-day period, representing their remarkable resilience. The distillation flux ranged from 6.15 LMH to 8.25 LMH, benefiting from the temperature gradient in the hyper-thermophilic setting and the design of the tubular submerged MD membrane module. The system also excels in pH control, utilizing fewer alkali and nutritional resources than conventional systems. Meiothermus, Firmicutes, and Bacteroidetes, the three dominant species, played a crucial role, showcasing their significance in adapting to high salinity and decomposing organic matter.


Asunto(s)
Reactores Biológicos , Destilación , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Destilación/métodos , Eliminación de Residuos Líquidos/métodos , Fósforo , Salinidad , Membranas Artificiales , Purificación del Agua/métodos , Aerobiosis , Amoníaco/análisis , Biomasa , Temperatura
11.
Bioresour Technol ; 402: 130787, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703955

RESUMEN

Slow dissolution/hydrolysis of insoluble/macromolecular organics and poor sludge filterability restrict the application potential of anaerobic membrane bioreactor (AnMBR). Bubble-free membrane microaeration was firstly proposed to overcome these obstacles in this study. The batch anaerobic digestion tests feeding insoluble starch and soluble peptone with and without microaeration showed that microaeration led to a 65.7-144.8% increase in methane production and increased critical flux of microfiltration membrane via driving the formation of large sludge flocs and the resultant improvement of sludge settleability. The metagenomic and bioinformatic analyses showed that microaeration significantly enriched the functional genes and bacteria for polysaccharide and protein hydrolysis, microaeration showed little negative effects on the functional genes involved in anaerobic metabolisms, and substrate transfer from starch to peptone significantly affected the functional genes and microbial community. This study demonstrates the dual synergism of microaeration to enhance the dissolution/hydrolysis/acidification of insoluble/macromolecular organics and sludge filterability for AnMBR application.


Asunto(s)
Reactores Biológicos , Filtración , Membranas Artificiales , Aguas del Alcantarillado , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Anaerobiosis , Filtración/métodos , Metano/metabolismo , Hidrólisis , Almidón/metabolismo
12.
Sci Total Environ ; 859(Pt 1): 160021, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36356754

RESUMEN

Emerging contaminant microplastics (MPs) are getting worldwide attention for their ubiquitous occurrence and potential risk to the environment. However, the seasonal influence on freshwater MP pollution remains poorly understood. To better understand and evaluate the riverine MPs in different seasons, this study conducted the risk assessment of MPs in an urban river, Houjin River, during the different seasons. The present study found that the MPs (0.1-5 mm, mostly 0.1-2 mm) were more abundant in the dry season (183.33 ± 128.95 items/m3) compared with the wet season (102.08 ± 45.80 items/m3). Similarly, the mixture of different MPs polymers was more diverse in the dry season. The related pollution indices such as the contamination factor (CF) and pollution load index (PLI) showed that average CF and PLI were 5.15 and 2.10 in the dry season, which significantly decreased to 1.58 and 1.25, respectively, in the wet season (p < 0.05). Additionally, significant difference of the average risk quotient (RQ) was observed, which was 0.037 in the dry season and 0.021 in the wet season (p < 0.05). To sum up, the results of this study indicate the seasonal effects on the pollution and risk of multiple compositions of MPs in the urban river, suggesting higher impacts of riverine MPs pollution in the dry season, as well as the potential increase of MPs, may lead to environmental risk in the future.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Ríos
13.
Chemosphere ; 313: 137644, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36577454

RESUMEN

In this study, we investigated the effect of different compositions of aquatic natural organic matter (NOM) and ions on virus removal by ultrafiltration (UF). MS2 bacteriophage was used as a surrogate. Humic acid (HA) improved the MS2 removal rate from 1.95 ± 0.09 LRV to 2.40 ± 0.03 LRV at the HA dosage of 9 mg/L through the combined mechanisms of size exclusion, electrostatic repulsion and hydrophobicity. MS2 removal rate further increased to 3.10 ± 0.05 LRV by 10 mmol/L Na+ dosage and 3.19 ± 0.12 LRV by Ca2+ 1 mmol/L in the HA-containing UF system. Size exclusion turned into the dominant virus removal mechanism according to the results of the fouling model fitting and the weakening of electrostatic repulsion and hydrophobicity. The complexation of Ca2+ also played a role in MS2 removal based on the analysis of interaction force. MS2 removal rate by bovine serum albumin (BSA) was poor, which was 2.07 ± 0.06 LRV at the BSA dosage of 9 mg/L. Hydrophobicity was greatly reduced and the dominant virus removal mechanisms were size exclusion and electrostatic repulsion. 10 mmol/L Na+ in the presence of BSA deteriorated MS2 removal rate to 2.02 ± 0.07 LRV by the weakening of electrostatic repulsion, hydrophobicity and size exclusion. Electrostatic repulsion severely decreased by 1 mmol/L Ca2+ and the enhanced adsorption barrier represented competitive adsorption of Ca2+ by BSA and MS2 contributed for MS2 removal further decline (1.99 ± 0.05 LRV). Complex components in water will have different effects on virus removal due to their properties and interactions. This study can provide references for selecting more efficient water treatment methods according to the different compositions of raw water in actual water treatment applications during the UF process. Moreover, the retention of virus by UF can be predicted based on our study results.


Asunto(s)
Ultrafiltración , Purificación del Agua , Ultrafiltración/métodos , Membranas Artificiales , Purificación del Agua/métodos , Sustancias Húmicas/análisis , Albúmina Sérica Bovina , Iones
14.
Bioresour Technol ; 361: 127730, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35932944

RESUMEN

Bio-utilization of lignocellulosic biomass is of huge significance as it can directly replace petroleum resources by producing liquid fuels and organic chemical products in a more sustainable way. However, studies on developing lignin-degrading microbial resources are still very few, which affects on establishing a consolidated bioprocessing of lignocellulosic resource. The main aim of this work is to discover thermostable laccases for lignin thermo-biodegradation by metagenome-mining and biochemical characterization. Results indicate that 124 putative thermostable laccase genes were identified from generated metagenomes. Significantly, 3 rationally selected proteins showed actual activity and structural stability at temperatures up to 60 °C and pH values as low as 4.87. These active recombinant enzymes verify a practical advance in the functional prediction of target proteins, and simultaneous sequence-to-function relationships in this metagenome. In short, the identified thermostable laccase genes in this work could expand range of lignin biocatalysts and contribute to build an efficient lignin biorefinery.


Asunto(s)
Lacasa , Lignina , Biodegradación Ambiental , Biomasa , Lacasa/química , Lacasa/genética , Lignina/química , Metagenoma
15.
Water Res ; 220: 118680, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35671684

RESUMEN

Anaerobic hydrogen-producing granule (AHPG) has been successfully applied in hydrogen production from wastewater. While various types of microplastics in large amounts are readily detected in both municipal and industrial wastewaters, however, to date the response of AHPG to multiple coexisting microplastics in wastewater is unknown yet. Herein, this study provided a first insight into the acute exposure-response relationship between multiple coexisting microplastics and the AHPG during biological hydrogen production from wastewater. Fluorescence tagging found that many microplastics accumulated and covered on the surface of the whole granule. Morphology and particle size of microplastics-bearing AHPG were characterized by microscopic observation, showing that the shock load of microplastics in the wastewater at the studied concentrations (40 and 80 mg/L) made the granule loose and even break down with the decreased particle size. The visualization of extracellular polymeric substances (EPS) structure revealed that microplastics decreased EPS production by 8.8-16.7%. Microbial community analysis demonstrated that the acute exposure of microplastics did not drive the change in the microbial community diversity and composition. However, toxic leachates and upgraded oxidative stress induced by microplastics increased cell death up to 14.7% and decreased hydrogen production by 18.7%, when the AHPG exposed to 80 mg/L of microplastics. This work gained a new insight into the response of anaerobic microorganisms to coexisting microplastics in the real environment.


Asunto(s)
Microplásticos , Aguas Residuales , Anaerobiosis , Hidrógeno , Plásticos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos
16.
Chemosphere ; 301: 134615, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35447202

RESUMEN

A newly green natural polymer bagasse cellulose based flocculant (PBCF) was synthesized utilizing a grafting copolymerization method for effectively enhancing humic acid (HA) removal from natural water. This work aims to investigate flocculation behavior of PBCF in synthetic water containing HA, and the effects of flocculant dose and initial solution pH on flocculation performance. Results showed that PBCF functioned well at a flocculant dose of 60 mg/L and pH ranging from 6.0 to 9.0. The organic removal efficiency in synthetic water in terms of HA (UV254) and chemical oxygen demand (COD Mn) were up to 90.6% and 91.3%, respectively. Furthermore, the charge neutralization and adsorption bridging played important roles in HA removal. When applied for lake water, PBCF removed 91.6% turbidity and 50.0% dissolved organic matter, respectively. In short, PBCF demonstrates great potential in water treatment in a safe and environmentally friendly or 'green' way.


Asunto(s)
Celulosa , Purificación del Agua , Celulosa/química , Floculación , Sustancias Húmicas , Polímeros/química , Purificación del Agua/métodos
17.
Sci Total Environ ; 850: 157986, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35963402

RESUMEN

Ultrafiltration (UF) has been widely used in water and advanced sewage treatment. Unfortunately, membrane fouling is still the main obstacle to further improvement in the system. Fe (III) salt, a type of traditional coagulant, is often applied to mitigate UF membrane fouling. However, low molecule organic weight cannot be effectively removed, thus the water quality after single coagulation treatment does not effectively meet the standard of subsequent water reuse during secondary effluent treatment. Recently, it has been found that potassium ferrate (Fe (VI)) has multiple functions of oxidation, sterilization and coagulation, with other studies proving its good performance in organics removal and membrane fouling mitigation. However, the respective contributions of oxidation and coagulation/adsorption have not yet been fully understood. The oxidation and coagulation/adsorption effects of Fe (VI) during membrane fouling mitigation were investigated here. The oxidation effect of Fe (VI) was the main reason for organics with the MW of 8-20 kDa removal, and its coagulation/adsorption mainly accounted for the smaller amounts of molecular organics removed. The oxidation of Fe (VI) was the main method for overcoming membrane fouling in the initial filtration; it largely alleviated the standard blockage. The formation of a cake layer transformed the main membrane fouling alleviation mechanism from oxidation to coagulation/adsorption and further removed smaller amounts of molecule organics with the increase of filtration cycles and Fe (VI) dosages. The main fouling mechanism altered from standard blocking and cake filtration to only cake filtration after Fe (VI) treatment. Overall, the mechanism of the oxidation and coagulation/adsorption of Fe (VI) were differentiated, and would provide a reference for future Fe (VI) pretreatment in UF membrane fouling control during water and wastewater treatments.


Asunto(s)
Ultrafiltración , Purificación del Agua , Adsorción , Hierro , Membranas Artificiales , Aguas del Alcantarillado , Ultrafiltración/métodos , Aguas Residuales , Purificación del Agua/métodos
18.
Sci Total Environ ; 808: 152123, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34864031

RESUMEN

To tackle membrane fouling and limited removals of pollutants (nutrients and emerging pollutants) that hinder the wide applications of membrane bioreactor (MBR), attached growth MBR (AGMBR) combining MBR and attached growth process has been developed. This review comprehensively presents the up-to-date developments of media used in both aerobic and anaerobic AGMBRs for treating wastewaters containing conventional and emerging pollutants. It also elaborates the properties of different media, characteristics of attached biomass, and their contributions to AGMBR performance. Conventional media, such as biological activated carbon and polymeric carriers, induce formation of aerobic, anoxic and/or anaerobic microenvironment, increase specific surface area or porous space for biomass retention, improve microbial activities, and enrich diverse microorganisms, thereby enhancing pollutants removal. Meanwhile, new media (i.e. biochar, bioaugmented carriers with selected strain/mixed cultures) do not only eliminate conventional pollutants (i.e. high concentration of nitrogen, etc.), but also effectively remove emerging pollutants (i.e. micropollutants, nonylphenol, adsorbable organic halogens, etc.) by forming thick and dense biofilm, creating anoxic/anaerobic microenvironments inside the media, enriching special functional microorganisms and increasing activity of microorganisms. Additionally, media can improve sludge characteristics (i.e. less extracellular polymeric substances and soluble microbial products, larger floc size, better sludge settleability, etc.), alleviating membrane fouling. Future studies need to focus on the development and applications of more new functional media in removing wider spectrum of emerging pollutants and enhancing biogas generation, as well as scale-up of lab-scale AGMBRs to pilot or full-scale AGMBRs.


Asunto(s)
Membranas Artificiales , Purificación del Agua , Reactores Biológicos , Aguas del Alcantarillado , Aguas Residuales
19.
Bioresour Technol ; 363: 127831, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36029979

RESUMEN

The discharged saline wastewater has severely influenced the aquatic environment as the treatment performance of many wastewater treatment techniques is limited. In addition, the sources of saline wastewater are also plentiful from agricultural and various industrial fields such as food processing, tannery, pharmaceutical, etc. Although high salinity levels negatively impact the performance of both physicochemical and biological processes, membrane bioreactor (MBR) processes are considered as a potential technology to treat saline wastewater under different salinity levels depending on the adaption of the microbial community. Therefore, this study aims to systematically review the application of MBR widely used in the saline wastewater treatment from the perspectives of microbial structure and treatment efficiencies. At last, the concept of carbon dioxide capture and storage will be proposed for the MBR-treating saline wastewater technologies and considered toward the circular economy with the target of zero emission.


Asunto(s)
Aguas Residuales , Purificación del Agua , Reactores Biológicos , Dióxido de Carbono , Membranas Artificiales , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Purificación del Agua/métodos , Industria Farmacéutica
20.
Bioresour Technol ; 319: 124160, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33010716

RESUMEN

Sulfonamide antibiotics (SMs), as a class of antibiotics commonly used in swine industries, pose a serious threat to animal and human health. This study aims to evaluate the performance of an anaerobic membrane bioreactor (AnMBR) with and without supplying a new pomelo peel derived biochar to treat swine wastewater containing SMs. Results show that 0.5 g/L biochar addition could increase more than 30% of sulfadiazine (SDZ) and sulfamethazine (SMZ) removal in AnMBR. Approximately 95% of chemical oxygen demand (COD) was removed in the AnMBR at an influent organic loading rate (OLR) of 3.27 kg COD/(m3·d) while an average methane yield was 0.2 L/g CODremoved with slightly change at a small dose 0.5 g/L biochar addition. SMs inhibited the COD removal and methane production and increased membrane fouling. The addition of biochar could reduce the membrane fouling by reducing the concentration of SMP and EPS.


Asunto(s)
Antibacterianos , Aguas Residuales , Anaerobiosis , Animales , Reactores Biológicos , Carbón Orgánico , Membranas Artificiales , Sulfonamidas , Porcinos , Eliminación de Residuos Líquidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA