RESUMEN
Gd chelates have occupied most of the market of magnetic resonance imaging (MRI) contrast agents for decades. However, there have been some problems (nephrotoxicity, non-specificity, and low r1 ) that limit their applications. Herein, a wet-chemical method is proposed for facile synthesis of poly(acrylic acid) (PAA) stabilized exceedingly small gadolinium oxide nanoparticles (ES-GON-PAA) with an excellent water dispersibility and a size smaller than 2.0 nm, which is a powerful T1 -weighted MRI contrast agent for diagnosis of diseases due to its remarkable relaxivities (r1 = 70.2 ± 1.8 mM-1 s-1 , and r2 /r1 = 1.02 ± 0.03, at 1.5 T). The r1 is much higher and the r2 /r1 is lower than that of the commercial Gd chelates and reported gadolinium oxide nanoparticles (GONs). Further ES-GON-PAA is developed with conjugation of RGD2 (RGD dimer) (i.e., ES-GON-PAA@RGD2) for T1 -weighted MRI of tumors that overexpress RGD receptors (i.e., integrin αv ß3 ). The maximum signal enhancement (ΔSNR) for T1 -weighted MRI of tumors reaches up to 372 ± 56% at 2 h post-injection of ES-GON-PAA@RGD2, which is much higher than commercial Gd-chelates (<80%). Due to the high biocompatibility and high tumor accumulation, ES-GON-PAA@RGD2 with remarkable relaxivities is a promising and powerful T1 -weighted MRI contrast agent.
Asunto(s)
Gadolinio/química , Imagen por Resonancia Magnética , Nanopartículas/química , Neoplasias/diagnóstico por imagen , Tamaño de la Partícula , Resinas Acrílicas/química , Línea Celular Tumoral , Humanos , Nanopartículas/ultraestructuraRESUMEN
Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low-molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, and N-nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations.
Asunto(s)
Destilación , Purificación del Agua , Permeabilidad , Gases , Purificación del Agua/métodos , Membranas ArtificialesRESUMEN
Histone deacetylases (HDACs) are known to be key enzymes in cancer development and progression through their modulation of chromatin structure and the expression and post-translational modification of numerous proteins. Aggressive dedifferentiated tumors, like glioblastoma, frequently overexpress HDACs, while HDAC inhibition can lead to cell cycle arrest, promote cellular differentiation and induce apoptosis. Although multiple HDAC inhibitors, such as quisinostat, are of interest in oncology due to their potent in vitro efficacy, their failure in the clinic as monotherapies against solid tumors has been attributed to poor delivery. Thus, we were motivated to develop quisinostat loaded poly(D,L-lactide)-b-methoxy poly(ethylene glycol) nanoparticles (NPs) to test their ability to treat orthotopic glioblastoma. In developing our NP formulation, we identified a novel, pH-driven approach for achieving over 9% (w/w) quisinostat loading. We show quisinostat-loaded NPs maintain drug potency in vitro and effectively slow tumor growth in vivo, leading to a prolonged survival compared to control mice.