Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Transl Med ; 20(1): 523, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371191

RESUMEN

BACKGROUND: Pulmonary fibrosis is a chronic progressive fibrotic interstitial lung disease characterized by excessive extracellular matrix (ECM) deposition caused by activated fibroblasts. Increasing evidence shows that matrix stiffness is essential in promoting fibroblast activation and profibrotic changes. Here, we investigated the expression and function of matrix stiffness-regulated ZNF416 in pulmonary fibrotic lung fibroblasts. METHODS: 1 kappa (soft), 60 kappa (stiff) gel-coated coverslips, or transforming growth factor-beta 1 (TGF-ß1)-cultured lung fibroblasts and the gain- or loss- of the ZNF416 function assays were performed in vitro. We also established two experimental pulmonary fibrosis mouse models by a single intratracheal instillation with 50 mg/kg silica or 6 mg/kg bleomycin (BLM). ZNF416 siRNA-loaded liposomes and TGF-ß1 receptor inhibitor SB431542 were administrated in vivo. RESULTS: Our study identified that ZNF416 could regulate fibroblast differentiation, proliferation, and contraction by promoting the nuclear accumulation of p-Smad2/3. Besides, ZNF416 siRNA-loaded liposome delivery by tail-vein could passively target the fibrotic area in the lung, and co-administration of ZNF416 siRNA-loaded liposomes and SB431542 significantly protects mice against silica or BLM-induced lung injury and fibrosis. CONCLUSION: In this study, our results indicate that mechanosensitive ZNF416 is a potential molecular target for the treatment of pulmonary fibrosis. Strategies aimed at silencing ZNF416 could be a promising approach to fight against pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Animales , Ratones , Bleomicina , Fibroblastos/metabolismo , Liposomas , Pulmón/patología , Ratones Endogámicos C57BL , Fibrosis Pulmonar/tratamiento farmacológico , ARN Interferente Pequeño/metabolismo , Dióxido de Silicio/efectos adversos , Factor de Crecimiento Transformador beta1/metabolismo
2.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-33860242

RESUMEN

A new cyst-forming nematode, Cactodera tianzhuensis n. sp. was isolated from the rhizosphere soil of Polygonum viviparum L. in Tianzhu county, China. Morphologically, the new species is characterized by lemon-shaped or rounded cysts that have protruding necks and vulval cones. The vulval cone of the new species appeared to be circumfenestrate without bullae and underbridge, vulval denticle present and anus distinct. Second-stage juveniles are vermiform, stylet well-developed with the rounded stylet knobs to slightly concave anteriorly. Lateral field with four incisures. Tail gradually tapering to a finely rounded terminus with a length of ca 54 (47-59) µm, outline of hyaline portion is V-shaped or U-shaped. Egg shells without visible markings or punctations. The phylogenetic analyses based on ITS-rDNA, D2-D3 of 28S-rDNA clearly revealed that the new species formed a separate clade from other Cactodera species, which further support the unique status of C. tianzhuensis n. sp. Therefore, it is described herein as a new species of the genus Cactodera.

3.
J Hazard Mater ; 467: 133713, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38335607

RESUMEN

As a fatal occupational disease with limited therapeutic options, molecular mechanisms underpinning silicosis are still undefined. Herein, single-cell RNA sequencing of the lung tissue of silicosis mice identified two monocyte subsets, which were characterized by Cxcl10 and Mmp14 and enriched in fibrotic mouse lungs. Both Cxcl10+ and Mmp14+ monocyte subsets exhibited activation of inflammatory marker genes and positive regulation of cytokine production. Another fibrosis-unique neutrophil population characterized by Ccl3 appeared to be related to the pro-fibrotic process, specifically the "inflammatory response". Meanwhile, the proportion of monocytes and neutrophils was significantly higher in the serum of silicosis patients and slices of lung tissue from patients with silicosis further validated the over-expression of Cxcl10 and Mmp14 in monocytes, also Ccl3 in neutrophils, respectively. Mechanically, receptor-ligand interaction analysis identified the crosstalk of Cxcl10+/Mmp14+ monocytes with Ccl3+ neutrophils promoting fibrogenesis via coupling of HBEGF-CD44 and CSF1-CSF1R. In vivo, administration of clodronate liposomes, Cxcl10 or Mmp14 siRNA-loaded liposomes, Ccl3 receptor antagonist BX471, CD44 or CSF1R neutralizing antibodies significantly alleviated silica-induced lung fibrosis. Collectively, these results demonstrate that the newly defined Cxcl10+/Mmp14+ monocytes and Ccl3+ neutrophils participate in the silicosis process and highlight anti-receptor-ligand pair treatment as a potentially effective therapeutic strategy in managing silicosis.


Asunto(s)
Fibrosis Pulmonar , Silicosis , Humanos , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Dióxido de Silicio/toxicidad , Monocitos , Neutrófilos , Ligandos , Liposomas , Fibrosis , Quimiocina CCL3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA