Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Hum Genet ; 103(6): 968-975, 2018 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-30414627

RESUMEN

Wiedemann-Rautenstrauch syndrome (WRS), also known as neonatal progeroid syndrome, is a rare disorder of unknown etiology. It has been proposed to be autosomal-recessive and is characterized by variable clinical features, such as intrauterine growth restriction and poor postnatal weight gain, characteristic facial features (triangular appearance to the face, convex nasal profile or pinched nose, and small mouth), widened fontanelles, pseudohydrocephalus, prominent scalp veins, lipodystrophy, and teeth abnormalities. A previous report described a single WRS patient with bi-allelic truncating and splicing variants in POLR3A. Here we present seven additional infants, children, and adults with WRS and bi-allelic truncating and/or splicing variants in POLR3A. POLR3A, the largest subunit of RNA polymerase III, is a DNA-directed RNA polymerase that transcribes many small noncoding RNAs that regulate transcription, RNA processing, and translation. Bi-allelic missense variants in POLR3A have been associated with phenotypes distinct from WRS: hypogonadotropic hypogonadism and hypomyelinating leukodystrophy with or without oligodontia. Our findings confirm the association of bi-allelic POLR3A variants with WRS, expand the clinical phenotype of WRS, and suggest specific POLR3A genotypes associated with WRS and hypomyelinating leukodystrophy.


Asunto(s)
Retardo del Crecimiento Fetal/genética , Variación Genética/genética , Pérdida de Heterocigocidad/genética , Progeria/genética , ARN Polimerasa III/genética , Adolescente , Adulto , Alelos , Preescolar , Femenino , Genotipo , Humanos , Fenotipo , Adulto Joven
2.
Am J Hum Genet ; 102(4): 706-712, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625025

RESUMEN

The major diseases affecting the thoracic aorta are aneurysms and acute dissections, and pathogenic variants in 11 genes are confirmed to lead to heritable thoracic aortic disease. However, many families in which multiple members have thoracic aortic disease do not have alterations in the known aortopathy genes. Genes highly expressed in the aorta were assessed for rare variants in exome sequencing data from such families, and compound rare heterozygous variants (p.Pro45Argfs∗25 and p.Glu750∗) in LTBP3 were identified in affected members of one family. A homozygous variant (p.Asn678_Gly681delinsThrCys) that introduces an additional cysteine into an epidermal growth factor (EGF)-like domain in the corresponding protein, latent TGF-ß binding protein (LTBP-3), was identified in a second family. Individuals with compound heterozygous or homozygous variants in these families have aneurysms and dissections of the thoracic aorta, as well as aneurysms of the abdominal aorta and other arteries, along with dental abnormalities and short stature. Heterozygous carriers of the p.Asn678_Gly681delinsThrCys variant have later onset of thoracic aortic disease, as well as dental abnormalities. In these families, LTBP3 variants segregated with thoracic aortic disease with a combined LOD score of 3.9. Additionally, heterozygous rare LTBP3 variants were found in individuals with early onset of acute aortic dissections, and some of these variants disrupted LTBP-3 levels or EGF-like domains. When compared to wild-type mice, Ltbp3-/- mice have enlarged aortic roots and ascending aortas. In summary, homozygous LTBP3 pathogenic variants predispose individuals to thoracic aortic aneurysms and dissections, along with the previously described skeletal and dental abnormalities.


Asunto(s)
Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , Predisposición Genética a la Enfermedad , Proteínas de Unión a TGF-beta Latente/genética , Mutación/genética , Adulto , Anciano de 80 o más Años , Animales , Presión Sanguínea/genética , Femenino , Homocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje
3.
Am J Hum Genet ; 102(6): 1143-1157, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29805042

RESUMEN

Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.


Asunto(s)
Cadherinas/genética , Cateninas/genética , Labio Leporino/genética , Fisura del Paladar/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Alelos , Secuencia de Aminoácidos , Animales , Biotinilación , Epitelio/metabolismo , Epitelio/patología , Femenino , Eliminación de Gen , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Hueso Paladar/patología , Linaje , Síndrome , Secuenciación del Exoma , Catenina delta
4.
Am J Hum Genet ; 101(1): 23-36, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28625504

RESUMEN

Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.


Asunto(s)
Anomalías Múltiples/genética , Proteínas del Dominio Armadillo/genética , Cuerpos Basales/metabolismo , Cerebelo/anomalías , Ciliopatías/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Mutación/genética , Retina/anomalías , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Anomalías Múltiples/patología , Animales , Proteínas del Dominio Armadillo/metabolismo , Secuencia de Bases , Encéfalo/patología , Cerebelo/patología , Cilios/metabolismo , Ciliopatías/patología , Diagnóstico por Imagen , Exoma/genética , Anomalías del Ojo/patología , Predisposición Genética a la Enfermedad , Humanos , Enfermedades Renales Quísticas/patología , Fenotipo , Retina/patología , Análisis de Secuencia de ADN , Regulación hacia Arriba/genética , Proteínas de Pez Cebra/metabolismo
5.
Hum Mutat ; 40(8): 1156-1171, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31009165

RESUMEN

A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.


Asunto(s)
Regulación hacia Abajo , Perfilación de la Expresión Génica/métodos , Mutación , Otitis Media/genética , Análisis de Secuencia de ADN/métodos , alfa-Macroglobulinas/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Finlandia , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Persona de Mediana Edad , Pakistán , Linaje , Filipinas , Análisis de Secuencia de ARN , Transducción de Señal , Estados Unidos , Adulto Joven
6.
Am J Hum Genet ; 99(5): 1005-1014, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27745832

RESUMEN

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.


Asunto(s)
Complemento C1r/genética , Complemento C1s/genética , Síndrome de Ehlers-Danlos/genética , Eliminación de Gen , Mutación Missense , Periodontitis/genética , Adolescente , Adulto , Niño , Preescolar , Mapeo Cromosómico , Cromosomas Humanos Par 12/genética , Síndrome de Ehlers-Danlos/diagnóstico , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Exoma , Femenino , Sitios Genéticos , Humanos , Masculino , Linaje , Periodontitis/diagnóstico , Conformación Proteica , Adulto Joven
7.
Am J Hum Genet ; 90(5): 907-14, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22560091

RESUMEN

Auriculocondylar syndrome (ACS) is a rare, autosomal-dominant craniofacial malformation syndrome characterized by variable micrognathia, temporomandibular joint ankylosis, cleft palate, and a characteristic "question-mark" ear malformation. Careful phenotypic characterization of severely affected probands in our cohort suggested the presence of a mandibular patterning defect resulting in a maxillary phenotype (i.e., homeotic transformation). We used exome sequencing of five probands and identified two novel (exclusive to the patient and/or family studied) missense mutations in PLCB4 and a shared mutation in GNAI3 in two unrelated probands. In confirmatory studies, three additional novel PLCB4 mutations were found in multigenerational ACS pedigrees. All mutations were confirmed by Sanger sequencing, were not present in more than 10,000 control chromosomes, and resulted in amino-acid substitutions located in highly conserved protein domains. Additionally, protein-structure modeling demonstrated that all ACS substitutions disrupt the catalytic sites of PLCB4 and GNAI3. We suggest that PLCB4 and GNAI3 are core signaling molecules of the endothelin-1-distal-less homeobox 5 and 6 (EDN1-DLX5/DLX6) pathway. Functional studies demonstrated a significant reduction in downstream DLX5 and DLX6 expression in ACS cases in assays using cultured osteoblasts from probands and controls. These results support the role of the previously implicated EDN1-DLX5/6 pathway in regulating mandibular specification in other species, which, when disrupted, results in a maxillary phenotype. This work defines the molecular basis of ACS as a homeotic transformation (mandible to maxilla) in humans.


Asunto(s)
Enfermedades del Oído/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Mutación , Fosfolipasa C beta/genética , Secuencia de Aminoácidos , Estudios de Cohortes , Oído/anomalías , Oído/fisiopatología , Enfermedades del Oído/fisiopatología , Endotelina-1/genética , Endotelina-1/metabolismo , Exoma , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Fenotipo , Fosfolipasa C beta/metabolismo , Conformación Proteica , Análisis de Secuencia de ARN
8.
Am J Med Genet A ; 161A(1): 108-13, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23239648

RESUMEN

Heterozygous mutations in the EFTUD2 were identified in 12 individuals with a rare sporadic craniofacial condition termed Mandibulofacial dysostosis with microcephaly (MIM 610536). We present clinical and radiographic features of three additional patients with de novo heterozygous mutations in EFTUD2. Although clinical features overlap with findings of the original report (choanal atresia, cleft palate, maxillary and mandibular hypoplasia, and microtia), microcephaly was present in two of three patients and cognitive impairment was milder in those with head circumference proportional to height. Our cases expand the phenotypic spectrum to include epibulbar dermoids and zygomatic arch clefting. We suggest that craniofacial computed tomography studies to assess cleft of zygomatic arch may assist in making this diagnosis. We recommend consideration of EFTUD2 testing in individuals with features of oculo-auriculo-vertebral spectrum and bilateral microtia, or individuals with atypical CHARGE syndrome who do not have a CHD7 mutation, particularly those with a zygomatic arch cleft. The absence of microcephaly in one patient indicates that it is a highly variable phenotypic feature.


Asunto(s)
Disostosis Mandibulofacial/genética , Microcefalia/genética , Mutación , Factor Tu de Elongación Peptídica/genética , Síndrome CHARGE/genética , Preescolar , Estudios de Cohortes , ADN Helicasas/genética , ADN Helicasas/metabolismo , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exoma , Genómica/métodos , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Masculino , Disostosis Mandibulofacial/diagnóstico , Microcefalia/diagnóstico , Fenotipo
9.
HGG Adv ; 2(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33791682

RESUMEN

The Joubert-Meckel syndrome spectrum is a continuum of recessive ciliopathy conditions caused by primary cilium dysfunction. The primary cilium is a microtubule-based, antenna-like organelle that projects from the surface of most human cell types, allowing them to respond to extracellular signals. The cilium is partitioned from the cell body by the transition zone, a known hotspot for ciliopathy-related proteins. Despite years of Joubert syndrome (JBTS) gene discovery, the genetic cause cannot be identified in up to 30% of individuals with JBTS, depending on the cohort, sequencing method, and criteria for pathogenic variants. Using exome and targeted sequencing of 655 families with JBTS, we identified three individuals from two families harboring biallelic, rare, predicted-deleterious missense TMEM218 variants. Via MatchMaker Exchange, we identified biallelic TMEM218 variants in four additional families with ciliopathy phenotypes. Of note, four of the six families carry missense variants affecting the same highly conserved amino acid position 115. Clinical features included the molar tooth sign (N = 2), occipital encephalocele (N = 5, all fetuses), retinal dystrophy (N = 4, all living individuals), polycystic kidneys (N = 2), and polydactyly (N = 2), without liver involvement. Combined with existing functional data linking TMEM218 to ciliary transition zone function, our human genetic data make a strong case for TMEM218 dysfunction as a cause of ciliopathy phenotypes including JBTS with retinal dystrophy and Meckel syndrome. Identifying all genetic causes of the Joubert-Meckel spectrum enables diagnostic testing, prognostic and recurrence risk counseling, and medical monitoring, as well as work to delineate the underlying biological mechanisms and identify targets for future therapies.

10.
Sci Rep ; 10(1): 15035, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929111

RESUMEN

Otitis media (OM), a very common disease in young children, can result in hearing loss. In order to potentially replicate previously reported associations between OM and PLG, exome and Sanger sequencing, RNA-sequencing of saliva and middle ear samples, 16S rRNA sequencing, molecular modeling, and statistical analyses including transmission disequilibrium tests (TDT) were performed in a multi-ethnic cohort of 718 families and simplex cases with OM. We identified four rare PLG variants c.112A > G (p.Lys38Glu), c.782G > A (p.Arg261His), c.1481C > T (p.Ala494Val) and c.2045 T > A (p.Ile682Asn), and one common variant c.1414G > A (p.Asp472Asn). However TDT analyses for these PLG variants did not demonstrate association with OM in 314 families. Additionally PLG expression is very low or absent in normal or diseased middle ear in mouse and human, and salivary expression and microbial α-diversity were non-significant in c.1414G > A (p.Asp472Asn) carriers. Based on molecular modeling, the novel rare variants particularly c.782G > A (p.Arg261His) and c.2045 T > A (p.Ile682Asn) were predicted to affect protein structure. Exploration of other potential disease mechanisms will help elucidate how PLG contributes to OM susceptibility in humans. Our results underline the importance of following up findings from genome-wide association through replication studies, preferably using multi-omic datasets.


Asunto(s)
Mutación Missense , Otitis Media/genética , Plasminógeno/genética , Animales , Oído Medio/metabolismo , Oído Medio/microbiología , Femenino , Genómica/métodos , Humanos , Masculino , Ratones , Microbiota , Otitis Media/microbiología , Otitis Media/patología , Linaje , Plasminógeno/metabolismo , Polimorfismo de Nucleótido Simple , Saliva/metabolismo
11.
Int J Dermatol ; 56(12): 1406-1413, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29130490

RESUMEN

BACKGROUND: Genodermatoses represent genetic anomalies of skin tissues including hair follicles, sebaceous glands, eccrine glands, nails, and teeth. Ten consanguineous families segregating various genodermatosis phenotypes were investigated in the present study. METHODS: Homozygosity mapping, exome, and Sanger sequencing were employed to search for the disease-causing variants in the 10 families. RESULTS: Exome sequencing identified seven homozygous sequence variants in different families, including: c.27delT in FERMT1; c.836delA in ABHD5; c.2453C>T in ERCC5; c.5314C>T in COL7A1; c.1630C>T in ALOXE3; c.502C>T in PPOX; and c.10G>T in ALDH3A2. Sanger sequencing revealed three homozygous variants: c.1718 + 2A>G in FERMT1; c.10459A>T in FLG; and c.92delT in the KRT14 genes as the underlying genetic cause of skin phenotypes. CONCLUSION: This study supports the use of exome sequencing as a powerful, efficient tool for identifying genes that underlie rare monogenic skin disorders.


Asunto(s)
Enfermedades Raras/genética , Enfermedades Cutáneas Genéticas/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferasa/genética , Aldehído Oxidorreductasas/genética , Vesícula/genética , Colágeno Tipo VII/genética , Consanguinidad , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Simple/genética , Exoma , Femenino , Proteínas Filagrina , Flavoproteínas/genética , Homocigoto , Humanos , Mutación INDEL , Eritrodermia Ictiosiforme Congénita/genética , Ictiosis Vulgar/genética , Ictiosis Lamelar/genética , Proteínas de Filamentos Intermediarios/genética , Queratina-14/genética , Errores Innatos del Metabolismo Lipídico/genética , Lipooxigenasa/genética , Masculino , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Enfermedades Musculares/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Linaje , Enfermedades Periodontales/genética , Fenotipo , Trastornos por Fotosensibilidad/genética , Porfiria Variegata/genética , Protoporfirinógeno-Oxidasa/genética , Síndrome de Sjögren-Larsson/genética , Factores de Transcripción/genética , Xerodermia Pigmentosa/genética
12.
Eur J Hum Genet ; 24(8): 1223-7, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26695873

RESUMEN

Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the ß-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia.


Asunto(s)
Alopecia/genética , Cadenas beta de Integrinas/genética , Discapacidad Intelectual/genética , Fenotipo , Anomalías Dentarias/genética , Adolescente , Adulto , Alopecia/diagnóstico , Niño , Femenino , Humanos , Cadenas beta de Integrinas/química , Discapacidad Intelectual/diagnóstico , Masculino , Mutación Missense , Linaje , Dominios Proteicos , Síndrome , Anomalías Dentarias/diagnóstico
13.
Metabolism ; 64(11): 1530-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26350127

RESUMEN

BACKGROUND: Lipodystrophies are a large heterogeneous group of genetic or acquired disorders characterized by generalized or partial fat loss, usually associated with metabolic complications such as diabetes mellitus, hypertriglyceridemia and hepatic steatosis. Many efforts have been made in the last years in identifying the genetic etiologies of several lipodystrophy forms, although some remain to be elucidated. METHODS: We report here the clinical description of a woman with a rare severe lipodystrophic and progeroid syndrome associated with hypertriglyceridemia and diabetes whose genetic bases have been clarified through whole-exome sequencing (WES) analysis. RESULTS: This article reports the 5th MDPL (Mandibular hypoplasia, deafness, progeroid features, and lipodystrophy syndrome) patient with the same de novo p.S605del mutation in POLD1. We provided further genetic evidence that this is a disease-causing mutation along with a plausible molecular mechanism responsible for this recurring event. Moreover we overviewed the current classification of the inherited forms of lipodystrophy, along with their underlying molecular basis. CONCLUSIONS: Progress in the identification of lipodystrophy genes will help in better understanding the role of the pathways involved in the complex physiology of fat. This will lead to new targets towards develop innovative therapeutic strategies for treating the disorder and its metabolic complications, as well as more common forms of adipose tissue redistribution as observed in the metabolic syndrome and type 2 diabetes.


Asunto(s)
Sordera/genética , Lipodistrofia/fisiopatología , Enfermedades Mandibulares/genética , Adulto , Femenino , Humanos , Lipodistrofia/genética , Masculino , Linaje , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA