Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Clin Periodontol ; 49(12): 1275-1288, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35817415

RESUMEN

AIM: The purpose of this study was to elucidate the suppressive effect of high-frequency pulsed diode laser irradiation on bone resorption and its biological effects on gene expression and microbiome composition on the gingival tissue in ligature-induced periodontitis in mice. MATERIALS AND METHODS: Ligating ligature around the teeth and/or laser irradiation was performed on the gingival tissue in mice as follows: Co (no ligature and no laser irradiation), Li (ligation without laser irradiation), La (no ligature but with laser irradiation), and LiLa (ligation with laser irradiation). Bone resorption was evaluated using micro-computed tomography. RNA-seq analysis was performed on gingival tissues of all four groups at 3 days after ligation. The differences in microbial composition between Li and LiLa were evaluated based on the number of 16S rRNA gene sequences. RESULTS: Bone resorption caused by ligation was significantly suppressed by laser irradiation. RNA-seq in Co and La gingival tissue revealed many differentially expressed genes, suggesting diode laser irradiation altered gene expression. Gene set enrichment analysis revealed mTORC1 signalling and E2F target gene sets were enriched in gingival tissues both in La and LiLa compared with that in Co and Li, respectively. The amount of extracted DNA from ligatures was reduced by laser irradiation, and bacterial network structure was altered between the Li and LiLa. CONCLUSIONS: High-frequency pulsed diode laser irradiation showed biological effects and suppressed bone resorption in ligature-induced periodontitis.


Asunto(s)
Pérdida de Hueso Alveolar , Resorción Ósea , Periodontitis , Ratones , Animales , Pérdida de Hueso Alveolar/etiología , Láseres de Semiconductores/uso terapéutico , ARN Ribosómico 16S , Microtomografía por Rayos X/efectos adversos , Periodontitis/complicaciones , Modelos Animales de Enfermedad
2.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445604

RESUMEN

Periodontitis is an inflammatory disease characterized by the destruction of the periodontium. In the last decade, a new murine model of periodontitis has been widely used to simulate alveolar bone resorption and periodontal soft tissue destruction by ligation. Typically, 3-0 to 9-0 silks are selected for ligation around the molars in mice, and significant bone loss and inflammatory infiltration are observed within a week. The ligature-maintained period can vary according to specific aims. We reviewed the findings on the interaction of systemic diseases with periodontitis, periodontal tissue destruction, the immunological and bacteriological responses, and new treatments. In these studies, the activation of osteoclasts, upregulation of pro-inflammatory factors, and excessive immune response have been considered as major factors in periodontal disruption. Multiple genes identified in periodontal tissues partly reflect the complexity of the pathogenesis of periodontitis. The effects of novel treatment methods on periodontitis have also been evaluated in a ligature-induced periodontitis model in mice. This model cannot completely represent all aspects of periodontitis in humans but is considered an effective method for the exploration of its mechanisms. Through this review, we aimed to provide evidence and enlightenment for future studies planning to use this model.


Asunto(s)
Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ligadura/efectos adversos , Enfermedades Periodontales/patología , Periodontitis/patología , Animales , Carga Bacteriana , Ratones , Enfermedades Periodontales/etiología , Periodontitis/etiología
3.
J Biophotonics ; 17(2): e202300166, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37975254

RESUMEN

We investigated the effects of low-level Er:YAG laser irradiation on proliferation and alternations in early gene expression of gingival fibroblasts. Mice primary gingival fibroblasts were irradiated with an Er:YAG laser (1.8, 3.9, and 5.8 J/cm2 ). Irradiation at 3.9 J/cm2 promoted cell proliferation without significant changes in lactate dehydrogenase or Hspa1a expression. Three hours after irradiation at 3.9 J/cm2 , the Fn1 expression level was significantly increased. RNA-seq identified 15 differentially expressed genes between irradiated and non-irradiated cells, some of which belonged to immediate early genes (IEGs). Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated MAPK pathway enhancement, and gene set enrichment analysis showed enrichment in the TGF-ß signaling gene set. Enhanced proliferation via laser irradiation disappeared upon inhibition of Dusp4, Dusp5, and Tgfr1 expression. Low-level Er:YAG laser irradiation, especially at 3.9 J/cm2 without a major temperature elevation, enhanced fibroblast proliferation, via TGF-ß and the MAPK signaling pathway following IEG expression.


Asunto(s)
Láseres de Estado Sólido , Ratones , Animales , Maxilar , Proliferación Celular/efectos de la radiación , Factor de Crecimiento Transformador beta , Fibroblastos/efectos de la radiación , Expresión Génica
4.
Front Cell Infect Microbiol ; 11: 745117, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096633

RESUMEN

Preventing adverse pregnancy outcomes is crucial for maternal and child health. Periodontal disease is a risk factor for many systemic diseases including adverse pregnancy outcomes, such as preterm birth and low birth weight. In addition, the administration of the periodontopathic bacterium Porphyromonas gingivalis exacerbates obesity, glucose tolerance, and hepatic steatosis and alters endocrine function in the brown adipose tissue (BAT). However, the effects of having periodontal disease during pregnancy remain unclear. Thus, this study investigates the effect of P. gingivalis administration on obesity, liver, and BAT during pregnancy. Sonicated P. gingivalis (Pg) or saline (Co) was injected intravenously and administered orally to pregnant C57BL/6J mice three times per week. Maternal body weight and fetal body weight on embryonic day (ED) 18 were evaluated. Microarray analysis and qPCR in the liver and BAT and hepatic and plasma triglyceride quantification were performed on dams at ED 18. The body weight of Pg dams was heavier than that of Co dams; however, the fetal body weight was decreased in the offspring of Pg dams. Microarray analysis revealed 254 and 53 differentially expressed genes in the liver and BAT, respectively. Gene set enrichment analysis exhibited the downregulation of fatty acid metabolism gene set in the liver and estrogen response early/late gene sets in the BAT, whereas inflammatory response and IL6/JAK/STAT3 signaling gene sets were upregulated both in the liver and BAT. The downregulation of expression levels of Lpin1, Lpin2, and Lxra in the liver, which are associated with triglyceride synthesis, and a decreasing trend in hepatic triglyceride of Pg dams were observed. P. gingivalis administration may alter lipid metabolism in the liver. Overall, the intravenous and oral administration of sonicated P. gingivalis-induced obesity and modified gene expression in the liver and BAT in pregnant mice and caused fetuses to be underweight.


Asunto(s)
Porphyromonas gingivalis , Nacimiento Prematuro , Tejido Adiposo Pardo , Animales , Femenino , Feto , Expresión Génica , Hígado , Ratones , Ratones Endogámicos C57BL , Obesidad , Fosfatidato Fosfatasa/genética , Porphyromonas gingivalis/genética , Embarazo , Delgadez
5.
Front Cell Infect Microbiol ; 10: 580577, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33542905

RESUMEN

Improvement of obesity is important for increasing longevity. The characteristics, size, and function of adipocytes are altered in patients with obesity. Adipose tissue is not only an energy storage but also an endocrine organ. Alteration of endocrine activities in adipose tissue, among them the functional decline of brown adipose tissue (BAT), is associated with obesity. Periodontal disease is a risk factor for systemic diseases since endotoxemia is caused by periodontal bacteria. However, the effect of periodontal disease on obesity remains unclear. Thus, this study aimed to investigate the effect of endotoxemia due to Porphyromonas gingivalis, a prominent cause of periodontal disease, on the BAT. Herein, endotoxemia was induced in 12-week-old C57BL/6J mice through intravenous injection of sonicated 108 CFU of P. gingivalis (Pg) or saline (control [Co]) once. Eighteen hours later, despite no inflammatory M1 macrophage infiltration, inflammation-related genes were upregulated exclusively in the BAT of Pg mice compared with Co mice. Although no marked histological changes were observed in adipose tissues, expressions of genes related to lipolysis, Lipe and Pnpla2 were downregulated after P. gingivalis injection in BAT. Furthermore, expression of Pparg and Adipoq was downregulated only in the BAT but not in the white adipose tissues, along with downregulation of Ucp1 and Cidea expression, which are BAT-specific markers, in Pg mice. Microarray analysis of the BAT showed 106 differentially expressed genes between Co and Pg mice. Gene set enrichment analysis revealed that the cholesterol homeostasis gene set and PI3/Akt/mTOR signaling gene set in BAT were downregulated, whereas the TGF-ß signaling gene set was enriched in Pg mice. Overall, intravenous injection of sonicated P. gingivalis altered the endocrine functions of the BAT in mice. This study indicates that endotoxemia by P. gingivalis potentially affects obesity by disrupting BAT function.


Asunto(s)
Tejido Adiposo Pardo , Endotoxemia , Tejido Adiposo Blanco , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Porphyromonas gingivalis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA