Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small Methods ; 5(5): e2001205, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34928075

RESUMEN

The early diagnosis of recurrence and metastasis is critically important for decreasing the morbidity and mortality associated with oral cancers. Although liquid biopsy methods hold great promise that provide a successive "time-slice" profile of primary and metastatic oral cancer, the development of non-invasive, rapid, simple, and cost-effective liquid biopsy techniques remains challenging. In this study, an ultrasensitive and selective electrochemical liquid biopsy is developed for oral cancer screening based on tracking trace amounts of cancer biomarker by functionalized asymmetric nano-channels. Detection via antigen-antibody reactions is assayed by evaluating changes in ionic current. Upon the recognition of cancer biomarker antigens in bio-fluids, the inner wall of nano-channel immobilized with the corresponding antibodies undergoes molecular conformation transformation and surface physicochemical changes, which significantly regulate the ion transport through the nano-channel and help achieve sensitivity with a detection limit of 10-12 g mL-1 . Furthermore, owing to the specificity of the monoclonal antibody for the antigen, the nano-channel exhibits high selectivity for the biomarker than for structurally similar biological molecules present in bio-fluids. The effectiveness of this technique is confirmed through the diagnosis of clinical cases of oral squamous cell carcinoma. This study presents a novel diagnostic tool for oral cancer detection in bio-fluids.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Biopsia Líquida/métodos , Neoplasias de la Boca/diagnóstico , Anticuerpos Monoclonales/inmunología , Biomarcadores de Tumor/inmunología , Cistatina B/inmunología , Cistatina B/metabolismo , Detección Precoz del Cáncer , Técnicas Electroquímicas , Ensayo de Inmunoadsorción Enzimática , Humanos , Nanotecnología , Saliva/química , Saliva/metabolismo
2.
ACS Nano ; 14(8): 9701-9710, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32687698

RESUMEN

As an approach to harvesting sustainable energy from ambient conditions, the osmotic energy between river water and seawater contributes to solving global issues such as the energy shortage and environmental pollution. Current attempts based on a reverse electrodialysis technique are limited mainly due to the economically unviable power density and inadequate mass transportation of membrane materials. Here, we demonstrate a benign strategy for designing a multilayer graphene oxide-silk nanofiber-graphene oxide biomimetic nacre-like sandwich as an osmotic power generator. Enhanced interfacial bonding endows the composite membranes with long-term stability in saline, and meanwhile, the two-dimensional nanofluidic channel configuration also reduces the ion transport resistance and provides large storage spaces for ions. Thus, the output power density of the proposed membrane-based generator achieves a value of up to 5.07 W m-2 by mixing seawater and river water. Furthermore, we experimentally and theoretically demonstrate that the thermal-field drives the increased output power density due to the advances in ionic movement range and activity of electrode reaction, showing the promise of strengthened thermo-osmotic energy conversion.


Asunto(s)
Nácar , Biomimética , Membranas Artificiales , Ósmosis , Seda
3.
Front Pharmacol ; 10: 1576, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038250

RESUMEN

INTRODUCTION: Diabetes is a metabolic disease with a high incidence and serious harm to human health. Islet ß-cell function defects can occur in the late stage of type 1 diabetes and type 2 diabetes. Studies have shown that stem cell is a promising new approach in bioengineering regenerative medicine. In the study of stem cell differentiation, three-dimensional (3D) cell culture is more capable of mimicking the microenvironment of cell growth in vivo than two-dimensional (2D) cell culture. The natural contact between cells and cells, and cells and extracellular matrix can regulate the development process and promote the formation of the artificial regenerative organs and organization. Type IV, VI collagen and laminin are the most abundant extracellular matrix components in islets. Matrigel, a basement membrane matrix biomaterial rich in laminin and collagen IV. MATERIALS AND METHODS: We used Matrigel biomaterial to physically embed human dental pulp stem cells (hDPSCs) to provide vector and 3D culture conditions for cells, and we explored and compared the preparation methods and preliminary mechanisms of differentiation of hDPSCs into insulin-producing cells (IPCs) under 2D or 3D culture conditions.We first designed and screened the strategy by mimicking the critical events of pancreatogenesis in vivo, and succeeded in establishing a new method for obtaining IPCs from hDPSCs. Activin A, Noggin, and small molecule compounds were used to synergistically induce hDPSCs to differentiate into definitive endoderm-like cells, pancreatic progenitor like cells and IPCs step by step under 2D culture conditions. Then, we used Matrigel to simulate the microenvironment in vivo, induced hDPSCs to differentiate into IPCs in Matrigel, evaluated and compared the efficiency between 2D and 3D culture conditions. RESULTS: The results showed that the synergistic combination of growth factors and small molecule compounds and 3D culture promoted the differentiation of hDPSCs into IPCs, significantly enhancing the release of insulin and C-peptide from IPCs. DISCUSSION: Significant support is provided for obtaining a large number of functional IPCs for disease modeling and final cell therapy in regenerative medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA