Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 916: 170253, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253097

RESUMEN

Root exudates are pivotal in plant stress responses, however, the impact of microplastics (MPs) on their release and characteristics remains poorly understood. This study delves into the effects of 0.05 % and 0.1 % (w/w) additions of polyethylene (PE) MPs on the growth and physiological properties of lettuce (Lactuca sativa L.) following 28 days of exposure. The release characteristics of root exudates were assessed using UV-vis and 3D-EEM. The results indicated that PE increased leaf number but did not significantly affect other agronomic traits or pigment contents. Notably, 0.05 % PE increased the total root length and surface area compared to the 0.1 % addition, while a non-significant trend towards decreased root activity was observed with PE MPs. PE MPs with 0.1 % addition notably reduced the DOC concentration in root exudates by 37.5 %, while 0.05 % PE had no impact on DOC and DON concentrations. PE addition increased the SUVA254, SUVA260, and SUVA280 values of root exudates, with the most pronounced effect seen in the 0.05 % PE treatment. This suggests an increase of aromaticity and hydrophobic components induced by PE addition. Fluorescence Regional Integration (FRI) analysis of 3D-EEM revealed that aromatic proteins (region I and II) were dominant in root exudates, with a slight increase in fulvic acid-like substances (region III) under 0.1 % PE addition. Moreover, prolonged PE exposure induced ROS damage in lettuce leaves, evidenced by a significant increase in content and production rate of O2·-. The decrease in CAT and POD activities may account for the lettuce's response to environmental stress, potentially surpassing its tolerance threshold or undergoing adaptive regulation. These findings underscore the potential risk of prolonged exposure to PE MPs on lettuce growth.


Asunto(s)
Microplásticos , Plásticos , Microplásticos/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Lactuca , Hidroponía , Estrés Oxidativo
2.
Sci Total Environ ; 860: 160221, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36402312

RESUMEN

Microplastics (MPs) and sulfamethoxazole (SMX) are emerging contaminants that are ubiquitous in the soil environment. In this study, we investigated MPs polymer type and soil environmental factor effects on SMX adsorption behavior in the soil system. Our results showed that MPs dosage affected the soil particles' SMX adsorption rate and capacity (Qe). Adding 1 % polystyrene (PS) increased the SMX adsorption rate significantly. The value of K1, which represented the adsorption rate, increased from 0.569 h-1 to 1.019 h-1. However, the addition of MPs reduced the soil's SMX equilibrium adsorption capacity slightly. Moreover, increasing salinity strength enhanced SMX adsorption capacity by MPs significantly. However, increasing calcium ions concentration decreased SMX adsorption in the MPs amended soil due to multivalent cationic bridging and competitive adsorption mechanisms. In addition, we observed that fulvic acid addition inhibited SMX adsorption. This study suggests that the addition of MPs reduced the adsorption of SMX in the soil slightly due to dilution effect. Meanwhile, changes in environmental factors also affected the adsorption behavior of SMX in soil amended with MPs.


Asunto(s)
Microplásticos , Suelo , Sulfametoxazol , Plásticos , Polímeros , Concentración Osmolar , Adsorción
3.
Sci Total Environ ; 904: 166722, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678525

RESUMEN

Micro/nanoplastics (MPs) are attracting increasing attention owing to the potential threats they pose to the sustainability of the environment and the health of living organisms. Thus, a comprehensive understanding of the influence of MPs on living organisms is vital for developing countermeasures. We conducted an extensive literature search to retrieve the articles related to MPs via the Web of Science. Accordingly, 152 articles published in the last decade and in influential journals were selected to analyze the effects of MPs on plants, animals, microorganisms, and humans as well as the current status, hotspots, and trends of studies on MPs. The results showed that owing to the special characteristics of MPs and anthropogenic activities, MPs have become ubiquitous worldwide. MPs are ingested by plants and animals and enter the human body through various pathways, resulting in numerous adverse effects, such as growth inhibition, oxidative stress, inflammation, organ damage, and germ cell lesions. Moreover, they affect microorganisms by reshaping the structure and function of microbial communities and changing the spread pathway. However, microorganisms can also contribute to the degradation of MPs. With increasing evidence of the adverse effects of MPs on biota, coping with MP pollution and mitigating harmful outcomes have emerged as major challenges. This review focuses on (1) the main effects of MPs on living organisms, ranging from microorganisms to humans, (2) the current status and hotspots of studies related to MPs, and (3) the challenges and prospects of further studies on MPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Humanos , Plásticos , Contaminación Ambiental , Contaminantes Químicos del Agua/análisis , Ecosistema
4.
J Hazard Mater ; 453: 131391, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37043864

RESUMEN

Microplastics (MPs) contamination in soils seriously threatens agroecosystems globally. However, very few studies have been done on the effects of MPs on the soil nitrogen cycle and related functional microorganisms. To assess MP's impact on the soil nitrogen cycle and related functional bacteria, we carried out a one-month soil incubation experiment using typical acidic soil. The soil was amended with alfalfa meal and was spiked with 1% and 5% (mass percentage) of low-density polyethylene (LDPE) and polyvinyl chloride (PVC) MPs. Our results showed that both LDPE and PVC addition significantly increased soil nitrification rate and nitrate reductase activity, which could further promote soil denitrification. The relative abundance of diazotrophs, ammonium oxidizing, and denitrifying bacterial groups were significantly altered with MPs addition. Moreover, the MPs treatments greatly enhanced denitrifying bacteria richness. Redundancy analysis showed that nitrate reductase activity was the most significant factor affecting the soil functional bacterial community. Correlation analysis shows that Nitrosospira genus might be for the improvement of soil nitrification rate. Our results implied that MPs exposure could significantly affect the soil nitrogen cycling in farmland ecosystems by influencing essential nitrogen functional microorganisms and related enzymatic activities.


Asunto(s)
Nitrificación , Polietileno , Polietileno/farmacología , Microplásticos/farmacología , Plásticos , Cloruro de Polivinilo , Ecosistema , Suelo , Nitrógeno/farmacología , Bacterias , Nitrato Reductasas/farmacología , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA