Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 618(7964): 328-332, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37138083

RESUMEN

Artefacts made from stones, bones and teeth are fundamental to our understanding of human subsistence strategies, behaviour and culture in the Pleistocene. Although these resources are plentiful, it is impossible to associate artefacts to specific human individuals1 who can be morphologically or genetically characterized, unless they are found within burials, which are rare in this time period. Thus, our ability to discern the societal roles of Pleistocene individuals based on their biological sex or genetic ancestry is limited2-5. Here we report the development of a non-destructive method for the gradual release of DNA trapped in ancient bone and tooth artefacts. Application of the method to an Upper Palaeolithic deer tooth pendant from Denisova Cave, Russia, resulted in the recovery of ancient human and deer mitochondrial genomes, which allowed us to estimate the age of the pendant at approximately 19,000-25,000 years. Nuclear DNA analysis identifies the presumed maker or wearer of the pendant as a female individual with strong genetic affinities to a group of Ancient North Eurasian individuals who lived around the same time but were previously found only further east in Siberia. Our work redefines how cultural and genetic records can be linked in prehistoric archaeology.


Asunto(s)
Huesos , ADN Antiguo , Diente , Animales , Femenino , Humanos , Arqueología/métodos , Huesos/química , Ciervos/genética , ADN Antiguo/análisis , ADN Antiguo/aislamiento & purificación , ADN Mitocondrial/análisis , ADN Mitocondrial/aislamiento & purificación , Historia Antigua , Siberia , Diente/química , Cuevas , Federación de Rusia
2.
Nature ; 581(7808): 299-302, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433609

RESUMEN

The Middle to Upper Palaeolithic transition in Europe witnessed the replacement and partial absorption of local Neanderthal populations by Homo sapiens populations of African origin1. However, this process probably varied across regions and its details remain largely unknown. In particular, the duration of chronological overlap between the two groups is much debated, as are the implications of this overlap for the nature of the biological and cultural interactions between Neanderthals and H. sapiens. Here we report the discovery and direct dating of human remains found in association with Initial Upper Palaeolithic artefacts2, from excavations at Bacho Kiro Cave (Bulgaria). Morphological analysis of a tooth and mitochondrial DNA from several hominin bone fragments, identified through proteomic screening, assign these finds to H. sapiens and link the expansion of Initial Upper Palaeolithic technologies with the spread of H. sapiens into the mid-latitudes of Eurasia before 45 thousand years ago3. The excavations yielded a wealth of bone artefacts, including pendants manufactured from cave bear teeth that are reminiscent of those later produced by the last Neanderthals of western Europe4-6. These finds are consistent with models based on the arrival of multiple waves of H. sapiens into Europe coming into contact with declining Neanderthal populations7,8.


Asunto(s)
Fósiles , Migración Humana/historia , Animales , Asia , Huesos/metabolismo , Bulgaria , Cuevas , ADN Antiguo/aislamiento & purificación , ADN Mitocondrial/genética , ADN Mitocondrial/aislamiento & purificación , Europa (Continente) , Historia Antigua , Humanos , Hombre de Neandertal/genética , Filogenia , Comportamiento del Uso de la Herramienta , Diente/anatomía & histología , Diente/metabolismo
3.
Nature ; 565(7741): 640-644, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30700871

RESUMEN

Denisova Cave in the Siberian Altai (Russia) is a key site for understanding the complex relationships between hominin groups that inhabited Eurasia in the Middle and Late Pleistocene epoch. DNA sequenced from human remains found at this site has revealed the presence of a hitherto unknown hominin group, the Denisovans1,2, and high-coverage genomes from both Neanderthal and Denisovan fossils provide evidence for admixture between these two populations3. Determining the age of these fossils is important if we are to understand the nature of hominin interaction, and aspects of their cultural and subsistence adaptations. Here we present 50 radiocarbon determinations from the late Middle and Upper Palaeolithic layers of the site. We also report three direct dates for hominin fragments and obtain a mitochondrial DNA sequence for one of them. We apply a Bayesian age modelling approach that combines chronometric (radiocarbon, uranium series and optical ages), stratigraphic and genetic data to calculate probabilistically the age of the human fossils at the site. Our modelled estimate for the age of the oldest Denisovan fossil suggests that this group was present at the site as early as 195,000 years ago (at 95.4% probability). All Neanderthal fossils-as well as Denisova 11, the daughter of a Neanderthal and a Denisovan4-date to between 80,000 and 140,000 years ago. The youngest Denisovan dates to 52,000-76,000 years ago. Direct radiocarbon dating of Upper Palaeolithic tooth pendants and bone points yielded the earliest evidence for the production of these artefacts in northern Eurasia, between 43,000 and 49,000 calibrated years before present (taken as AD 1950). On the basis of current archaeological evidence, it may be assumed that these artefacts are associated with the Denisovan population. It is not currently possible to determine whether anatomically modern humans were involved in their production, as modern-human fossil and genetic evidence of such antiquity has not yet been identified in the Altai region.


Asunto(s)
Cuevas , Fósiles , Hominidae , Datación Radiométrica , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Ciervos , Fémur/química , Sedimentos Geológicos/química , Historia Antigua , Hominidae/genética , Humanos , Hombre de Neandertal/genética , Isótopos de Oxígeno , Siberia , Factores de Tiempo , Diente/química
4.
Nature ; 555(7698): 652-656, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29562232

RESUMEN

Although it has previously been shown that Neanderthals contributed DNA to modern humans, not much is known about the genetic diversity of Neanderthals or the relationship between late Neanderthal populations at the time at which their last interactions with early modern humans occurred and before they eventually disappeared. Our ability to retrieve DNA from a larger number of Neanderthal individuals has been limited by poor preservation of endogenous DNA and contamination of Neanderthal skeletal remains by large amounts of microbial and present-day human DNA. Here we use hypochlorite treatment of as little as 9 mg of bone or tooth powder to generate between 1- and 2.7-fold genomic coverage of five Neanderthals who lived around 39,000 to 47,000 years ago (that is, late Neanderthals), thereby doubling the number of Neanderthals for which genome sequences are available. Genetic similarity among late Neanderthals is well predicted by their geographical location, and comparison to the genome of an older Neanderthal from the Caucasus indicates that a population turnover is likely to have occurred, either in the Caucasus or throughout Europe, towards the end of Neanderthal history. We find that the bulk of Neanderthal gene flow into early modern humans originated from one or more source populations that diverged from the Neanderthals that were studied here at least 70,000 years ago, but after they split from a previously sequenced Neanderthal from Siberia around 150,000 years ago. Although four of the Neanderthals studied here post-date the putative arrival of early modern humans into Europe, we do not detect any recent gene flow from early modern humans in their ancestry.


Asunto(s)
Genoma/genética , Hombre de Neandertal/clasificación , Hombre de Neandertal/genética , Filogenia , África/etnología , Animales , Huesos , ADN Antiguo/análisis , Europa (Continente)/etnología , Femenino , Flujo Génico , Genética de Población , Genómica , Humanos , Ácido Hipocloroso , Masculino , Siberia/etnología , Diente
5.
Proc Natl Acad Sci U S A ; 112(51): 15696-700, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26630009

RESUMEN

Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/química , Hombre de Neandertal/genética , Animales , Secuencia de Bases , Evolución Molecular , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
6.
Nature ; 468(7327): 1053-60, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21179161

RESUMEN

Using DNA extracted from a finger bone found in Denisova Cave in southern Siberia, we have sequenced the genome of an archaic hominin to about 1.9-fold coverage. This individual is from a group that shares a common origin with Neanderthals. This population was not involved in the putative gene flow from Neanderthals into Eurasians; however, the data suggest that it contributed 4-6% of its genetic material to the genomes of present-day Melanesians. We designate this hominin population 'Denisovans' and suggest that it may have been widespread in Asia during the Late Pleistocene epoch. A tooth found in Denisova Cave carries a mitochondrial genome highly similar to that of the finger bone. This tooth shares no derived morphological features with Neanderthals or modern humans, further indicating that Denisovans have an evolutionary history distinct from Neanderthals and modern humans.


Asunto(s)
Fósiles , Flujo Génico , Genoma/genética , Hominidae/clasificación , Hominidae/genética , Animales , Asia , ADN Mitocondrial/genética , Europa (Continente) , Falanges de los Dedos de la Mano/química , Humanos , Melanesia , Datos de Secuencia Molecular , Filogenia , Siberia , Diente/anatomía & histología , Diente/química
7.
Science ; 370(6516): 584-587, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33122381

RESUMEN

A late Middle Pleistocene mandible from Baishiya Karst Cave (BKC) on the Tibetan Plateau has been inferred to be from a Denisovan, an Asian hominin related to Neanderthals, on the basis of an amino acid substitution in its collagen. Here we describe the stratigraphy, chronology, and mitochondrial DNA extracted from the sediments in BKC. We recover Denisovan mitochondrial DNA from sediments deposited ~100 thousand and ~60 thousand years ago (ka) and possibly as recently as ~45 ka. The long-term occupation of BKC by Denisovans suggests that they may have adapted to life at high altitudes and may have contributed such adaptations to modern humans on the Tibetan Plateau.


Asunto(s)
Cuevas , ADN Antiguo/aislamiento & purificación , Sedimentos Geológicos/química , Hominidae/clasificación , Hominidae/genética , Animales , ADN Mitocondrial/genética , Humanos , Filogenia , Tibet
8.
Curr Biol ; 13(13): 1150-2, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12842016

RESUMEN

The determination of nuclear DNA sequences from ancient remains would open many novel opportunities such as the resolution of phylogenies, the sexing of hominid and animal remains, and the characterization of genes involved in phenotypic traits. However, to date, single-copy nuclear DNA sequences from fossils have been determined only from bones and teeth of woolly mammoths preserved in the permafrost. Since the best preserved ancient nucleic acids tend to stem from cold environments, this has led to the assumption that nuclear DNA would be retrievable only from frozen remains. We have previously shown that Pleistocene coprolites stemming from the extinct Shasta sloth (Nothrotheriops shastensis, Megatheriidae) contain mitochondrial (mt) DNA from the animal that produced them as well as chloroplast (cp) DNA from the ingested plants. Recent attempts to resolve the phylogeny of two families of extinct sloths by using strictly mitochondrial DNA has been inconclusive. We have prepared DNA extracts from a ground sloth coprolite from Gypsum Cave, Nevada, and quantitated the number of mtDNA copies for three different fragment lengths by using real-time PCR. We amplified one multicopy and three single-copy nuclear gene fragments and used the concatenated sequence to resolve the phylogeny. These results show that ancient single-copy nuclear DNA can be recovered from warm, arid climates. Thus, nuclear DNA preservation is not restricted to cold climates.


Asunto(s)
Heces , Fósiles , Filogenia , Perezosos/genética , Animales , Secuencia de Bases , Clima , Análisis por Conglomerados , Cartilla de ADN , Datos de Secuencia Molecular , Nevada , Análisis de Secuencia de ADN
9.
Curr Biol ; 14(1): 40-3, 2004 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-14711412

RESUMEN

The European cave bear (Ursus spelaeus), which became extinct around 15,000 years ago, had several morphologically different forms. Most conspicuous of these were small Alpine cave bears found at elevations of 1,600 to 2,800 m. Whereas some paleontologists have considered these bears a distinct form, or even a distinct species, others have disputed this. By a combination of morphological and genetic methods, we have analyzed a population of small cave bears from Ramesch Cave (2,000 m altitude) and one of larger cave bears from Gamssulzen Cave (1,300 m), situated approximately 10 km apart in the Austrian Alps (Figure 1A). We find no evidence of mitochondrial gene flow between these caves during the 15,000 years when they were both occupied by cave bears, although mitochondrial DNA sequences identical to those from Gamssulzen Cave could be recovered from a site located about 200 km to the south in Croatia. We also find no evidence that the morphology of the bears in the two caves changed to become more similar over time. We suggest that the two cave bear forms may have represented two reproductively isolated subspecies or species.


Asunto(s)
Huesos/anatomía & histología , ADN Mitocondrial/genética , Fósiles , Reproducción/fisiología , Diente/anatomía & histología , Ursidae/fisiología , Animales , Austria , Croacia , Geografía , Odontometría , Dinámica Poblacional , Análisis de Secuencia de ADN , Especificidad de la Especie , Ursidae/anatomía & histología , Ursidae/genética
10.
Sci Adv ; 3(7): e1700186, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28695206

RESUMEN

The presence of Neandertals in Europe and Western Eurasia before the arrival of anatomically modern humans is well supported by archaeological and paleontological data. In contrast, fossil evidence for Denisovans, a sister group of Neandertals recently identified on the basis of DNA sequences, is limited to three specimens, all of which originate from Denisova Cave in the Altai Mountains (Siberia, Russia). We report the retrieval of DNA from a deciduous lower second molar (Denisova 2), discovered in a deep stratigraphic layer in Denisova Cave, and show that this tooth comes from a female Denisovan individual. On the basis of the number of "missing substitutions" in the mitochondrial DNA determined from the specimen, we find that Denisova 2 is substantially older than two of the other Denisovans, reinforcing the view that Denisovans were likely to have been present in the vicinity of Denisova Cave over an extended time period. We show that the level of nuclear DNA sequence diversity found among Denisovans is within the lower range of that of present-day human populations.

12.
PLoS One ; 8(12): e83218, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349465

RESUMEN

Comparisons of the genomes of Neandertals and Denisovans with present-day human genomes have suggested that the gene RUNX2, which encodes a transcription factor, may have been positively selected during early human evolution. Here, we overexpress RUNX2 in ten human cell lines and identify genes that are directly or indirectly affected by RUNX2 expression. We find a number of genes not previously known to be affected by RUNX2 expression, in particular BIRC3, genes encoded on the mitochondrial genome, and several genes involved in bone and tooth formation. These genes are likely to provide inroads into pathways affected by RUNX2 and potentially by the evolutionary changes that affected RUNX2 in modern humans.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Regulación de la Expresión Génica/fisiología , Proteína 3 que Contiene Repeticiones IAP de Baculovirus , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Evolución Molecular , Perfilación de la Expresión Génica , Genes Mitocondriales/fisiología , Genoma Mitocondrial/fisiología , Células HeLa , Células Hep G2 , Humanos , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Proteínas Inhibidoras de la Apoptosis/genética , Osteogénesis/fisiología , Diente/metabolismo , Ubiquitina-Proteína Ligasas
13.
Nature ; 418(6900): 869-72, 2002 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-12192408

RESUMEN

Language is a uniquely human trait likely to have been a prerequisite for the development of human culture. The ability to develop articulate speech relies on capabilities, such as fine control of the larynx and mouth, that are absent in chimpanzees and other great apes. FOXP2 is the first gene relevant to the human ability to develop language. A point mutation in FOXP2 co-segregates with a disorder in a family in which half of the members have severe articulation difficulties accompanied by linguistic and grammatical impairment. This gene is disrupted by translocation in an unrelated individual who has a similar disorder. Thus, two functional copies of FOXP2 seem to be required for acquisition of normal spoken language. We sequenced the complementary DNAs that encode the FOXP2 protein in the chimpanzee, gorilla, orang-utan, rhesus macaque and mouse, and compared them with the human cDNA. We also investigated intraspecific variation of the human FOXP2 gene. Here we show that human FOXP2 contains changes in amino-acid coding and a pattern of nucleotide polymorphism, which strongly suggest that this gene has been the target of selection during recent human evolution.


Asunto(s)
Evolución Molecular , Lenguaje , Trastornos del Habla/genética , Habla , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Clonación Molecular , Secuencia Conservada/genética , Factores de Transcripción Forkhead , Variación Genética/genética , Humanos , Ratones , Datos de Secuencia Molecular , Mutación/genética , Filogenia , Primates/genética , Selección Genética , Factores de Transcripción/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA