Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 1): 133332, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914408

RESUMEN

Biopolymers like starch, a renewable and widely available resource, are increasingly being used to fabricate the films for eco-friendly packaging solutions. Starch-based edible films offer significant advantages for food packaging, including biodegradability and the ability to extend shelf life. However, they also present challenges such as moisture sensitivity and limited barrier properties compared to synthetic materials. These limitations can be mitigated by incorporating bioactive components, such as antimicrobial agents or antioxidants, which enhance the film's resistance to moisture and improve its barrier properties, making it a more viable option for food packaging. This review explores the emerging field of starch-based sustainable edible films enhanced with bioactive components for food packaging applications. It delves into fabrication techniques, structural properties, and functional attributes, highlighting the potential of these innovative films to reduce environmental impact and preserve food quality. Key topics discussed include sustainability issues, processing methods, performance characteristics, and potential applications in the food industry. The review provides a comprehensive overview of current research and developments in starch-based edible films, presenting them as promising alternatives to conventional food packaging that can help reduce plastic waste and environmental impact.


Asunto(s)
Películas Comestibles , Embalaje de Alimentos , Almidón , Embalaje de Alimentos/métodos , Almidón/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Biopolímeros/química
2.
Ageing Res Rev ; 99: 102393, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925479

RESUMEN

Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.


Asunto(s)
Enfermedad de Alzheimer , Curcumina , Nanoestructuras , Curcumina/administración & dosificación , Curcumina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Animales , Polímeros , Nanopartículas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología
3.
Int J Biol Macromol ; 222(Pt B): 1852-1860, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36195229

RESUMEN

Starch-based nanofibrous scaffolds exhibit a potential wound healing processes as they are cost-effective, flexible, and biocompatible. Recently, natural polymers have received greater importance in regenerative medicine, mainly in the process of healing wounds and burns due to their unique properties which also include safety, biocompatibility, and biodegradability. In this respect, starch is considered to be one of the reliable natural polymers to promote the process of wound healing at a significantly faster rate. Starch and starch-based electrospun nanofibrous scaffolds have been used for the wound healing process which includes the process of adhesion, proliferation, differentiation, and regeneration of cells. It also possesses significant activity to encapsulate and deliver biomaterials at a specific site which persuades the wound healing process at an increased rate. As the aforementioned scaffolds mimic the native extracellular matrix more closely, may help in the acceleration of wound closure, which in turn may lead to the promotion of tissue reorganization and remodeling. In-depth knowledge in understanding the properties of nanofibrous scaffolds paves a way to unfold novel methods and therapies, also to overcome challenges associated with wound healing. This review is intended to provide comprehensive information and recent advances in starch-based electrospun nanofibrous scaffolds for wound healing.


Asunto(s)
Nanofibras , Andamios del Tejido , Almidón , Cicatrización de Heridas , Polímeros , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA