Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Electrophoresis ; 42(17-18): 1853-1863, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33742705

RESUMEN

2'-(4-Pyridyl)- and 2'-(4-hydroxyphenyl)-TCIBPs (TCIBP = 3,3',5,5'-tetrachloro-2-iodo-4,4'-bipyridyl) are chiral compounds that showed interesting inhibition activity against transthyretin fibrillation in vitro. We became interested in their enantioseparation since we noticed that the M-stereoisomer is more effective than the P-enantiomer. Based thereon, we recently reported the enantioseparation of 2'-substituted TCIBP derivatives with amylose-based chiral columns. Following this study, herein we describe the comparative enantioseparation of both 2'-(4-pyridyl)- and 2'-(4-hydroxyphenyl)-TCIBPs on four cellulose phenylcarbamate-based chiral columns aiming to explore the effect of the polymer backbone, as well as the nature and position of substituents on the side groups on the enantioseparability of these compounds. In the frame of this project, the impact of subtle variations of analyte and polysaccharide structures, and mobile phase (MP) polarity on retention and selectivity was evaluated. The effect of temperature on retention and selectivity was also considered, and overall thermodynamic parameters associated with the analyte adsorption onto the CSP surface were derived from van 't Hoff plots. Interesting cases of enantiomer elution order (EEO) reversal were observed. In particular, the EEO was shown to be dependent on polysaccharide backbone, the elution sequence of the two analytes being P-M and M-P on cellulose and amylose tris(3,5-dimethylphenylcarbamate), respectively. In this regard, a theoretical investigation based on molecular dynamics (MD) simulations was performed by using amylose and cellulose tris(3,5-dimethylphenylcarbamate) nonamers as virtual models of the polysaccharide-based selectors. This exploration at the molecular level shed light on the origin of the enantiodiscrimination processes.


Asunto(s)
Simulación de Dinámica Molecular , Amilosa , Celulosa , Cromatografía Líquida de Alta Presión , Compuestos Heterocíclicos , Polisacáridos , Estereoisomerismo
2.
J Chromatogr A ; 1567: 119-129, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-29961652

RESUMEN

A chalcogen bond (ChB) is a σ-hole-based noncovalent interaction between a Lewis base and an electrophilic element of Group VI (O, S, Se, Te), which behaves as a Lewis acid. Recently, we demonstrated that halogen bond, the more familiar σ-hole-based interaction, is able to promote the enantioseparation of chiral compounds in HPLC environment. On this basis, an investigation to detect ChBs, functioning as stereoselective secondary interactions for HPLC enantioseparations, was started off and the results of this study are described herein. Our investigation also focused on the impact of the perfluorinated aromatic ring as a π-hole donor recognition site. For these purposes, seven atropisomeric fluorinated 3-arylthio-4,4'-bipyridines were designed, synthesized and used as potential ChB donors (ChBDs) with two cellulose-based chiral stationary phases (CSPs) containing carbonyl groups as ChB acceptors (ChBAs). In addition, one and two analogues lacking fluorine and sulphur, respectively, were prepared as terms of comparison. The design of the test analytes was computationally guided. In this regard, electrostatic potentials (EPs) associated with σ- and π-holes were computed and the atomic contributions to the sulphur EP maxima were derived using a molecular space partitioning in terms of Bader's atomic basins. This procedure is akin to the Bader-Gatti electron density source function (SF) decomposition, yet suitably extended to the EP field. For five 3-substituted-4,4'-bipyridines, thermodynamic parameters were derived from van't Hoff plots. Finally, the use of molecular dynamic (MD) simulation to model ChB in cellulose-analyte complexes was explored. Evidences that σ-hole and π-hole interactions can jointly drive HPLC enantioseparations through recognition sites generated by electronic charge depletion emerged from both experimental results and theoretical data.


Asunto(s)
Calcógenos/química , Cromatografía Líquida de Alta Presión/métodos , Halogenación , Piridinas/química , Piridinas/aislamiento & purificación , Celulosa/química , Calcógenos/síntesis química , Electrones , Entropía , Halógenos/química , Modelos Lineales , Simulación de Dinámica Molecular , Piridinas/síntesis química , Electricidad Estática , Estereoisomerismo , Termodinámica
3.
J Chromatogr A ; 1467: 228-238, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27328882

RESUMEN

Although the halogen bond (XB) has been so far mainly studied in silico and in the solid state, its potential impact in solution is yet to be fully understood. In this study, we describe the first systematic investigation on the halogen bond in solvated environment by high-performance liquid chromatography (HPLC). Thirty three atropisomeric polyhalogenated-4,4'-bipyridines (HBipys), containing Cl, Br and I as substituents, were selected and used as potential XB donors (XBDs) on two cellulose-based chiral stationary phases (CSPs) containing potential XB acceptors (XBAs). The impact of the halogens on the enantiodiscrimination mechanism was investigated and iodine showed a pivotal role on the enantioseparation in non-polar medium. Electrostatic potentials (EPs) were computed to understand the electrostatic component of CSP-analyte interaction. Moreover, van't Hoff studies for ten HBipys were performed and the thermodynamic parameters governing the halogen-dependent enantioseparations are discussed. Finally, a molecular dynamic (MD) simulation is proposed to model halogen bond in polysaccharide-analyte complexes by inclusion of a charged extra point to represent the positive 'σ-hole' on the halogen atom. On the basis of both experimental results and theoretical data, we have profiled the halogen bond as a chemo-, regio-, site- and stereoselective interaction which can work in HPLC environment besides other known interactions based on the complementarity between selector and selectand.


Asunto(s)
Cromatografía Líquida de Alta Presión , Halógenos/química , Celulosa/química , Polisacáridos/química , Electricidad Estática , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA