RESUMEN
PURPOSE: As a dental material, polyetheretherketone (PEEK) is bioinert that does not induce cellular response and bone/gingival tissues regeneration. This study was to develop bioactive coating on PEEK and investigate the effects of coating on cellular response. MATERIALS AND METHODS: Tantalum pentoxide (TP) coating was fabricated on PEEK surface by vacuum evaporation and responses of rat bone marrow mesenchymal stem (RBMS) cells/human gingival epithelial (HGE) were studied. RESULTS: A dense coating (around 400 nm in thickness) of TP was closely combined with PEEK (PKTP). Moreover, the coating was non-crystalline TP, which contained many small humps (around 10 nm in size), exhibiting a nanostructured surface. In addition, the roughness, hydrophilicity, surface energy, and protein adsorption of PKTP were remarkably higher than that of PEEK. Furthermore, the responses (adhesion, proliferation, and osteogenic gene expression) of RBMS cells, and responses (adhesion and proliferation) of HGE cells to PKTP were remarkably improved in comparison with PEEK. It could be suggested that the nanostructured coating of TP on PEEK played crucial roles in inducing the responses of RBMS/HGE cells. CONCLUSION: PKTP with elevated surface performances and outstanding cytocompatibility might have enormous potential for dental implant application.
Asunto(s)
Células Epiteliales/citología , Encía/citología , Cetonas/farmacología , Células Madre Mesenquimatosas/citología , Nanoestructuras/química , Óxidos/farmacología , Polietilenglicoles/farmacología , Tantalio/farmacología , Adsorción , Fosfatasa Alcalina/metabolismo , Animales , Benzofenonas , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/enzimología , Nanoestructuras/ultraestructura , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Polímeros , Ratas Sprague-Dawley , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Difracción de Rayos XRESUMEN
Magnesium and Mg-based alloys are promising biomaterials for orthopedic implants because of their degradability, osteogenic effects, and biocompatibility. However, the drawbacks of these materials include high hydrogen gas production, unexpected corrosion resistance, and insufficient mechanical strength duration. Surface modification can protect these biomaterials and induce osteogenesis. In this work, a SrHPO4 coating was developed for our patented biodegradable Mg-Nd-Zn-Zr alloy (abbr. JDBM) through a chemical deposition method. The coating was characterized by in vitro immersion, ion release, and cytotoxicity tests, which showed a slower corrosion behavior and excellent cell viability. RNA sequencing of MC3T3E1 cells treated with SrHPO4-coated JDBM ion release test extract showed increased Tlr4, followed by the activation of the downstream PI3K/Akt signaling pathway, causing proliferation and growth of pre-osteoblasts. An intramedullary nail (IMN) was implanted in a femoral fracture rat model. Mechanical test, radiological and histological analysis suggested that SrHPO4-coated JDBM has superior mechanical properties, induces more bone formation, and decreases the degradation rate compared with uncoated JDBM and the administration of TLR4 inhibitor attenuated the new bone formation for fracture healing. SrHPO4 is a promising coating for JDBM implants, particularly for long-bone fractures.