Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 243: 45-66, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31078929

RESUMEN

Investigations on membrane materials for membrane distillation (MD) and its applications have been ongoing since the 1990s. However, a lack of materials that produce robustly stable and up-to-the-mark membranes for MD for different industrial applications remains an ongoing problem. This paper provides an overview of materials developed for MD applications. Although key aspects of published articles reviewed in this paper pertain to MD membranes synthesized for desalination, future MD can also be applied to organic wastewater containing surfactants with inorganic compounds, either with the help of hybrid treatment processes or with customized membrane materials. Many industrial discharges produce effluents at a very high temperature, which is an available driving force for MD. However, there remains a lack of cost-effective membrane materials. Amphiphobic and omniphobic membranes have recently been developed for treating emulsified and shale gas produced water, but the problem of organic fouling and pore wetting remains a major challenge, especially when NaCl and other inorganic impurities are present, which further deteriorate separation performance. Therefore, further advancements in materials are required for the treatment of emulsified industrial wastewater containing surfactants, salts, and for oil or shale gas wastewater for its commercialized reuse. Integrated MD systems, however, may represent a major change in shale gas wastewater and emulsified wastewater that are difficult to treat.


Asunto(s)
Aguas Residuales , Purificación del Agua , Destilación , Membranas Artificiales , Gas Natural
2.
Water Sci Technol ; 75(5-6): 1063-1070, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28272036

RESUMEN

A pilot-scale pressured hollow-fiber microfiltration (MF) process as pretreatment for the reverse osmosis process was studied and operated under various conditions to assess the relative influence of backwashing, chemical enhanced backwashing (CEB), and bag filter application. The pilot plant process consisted of backwashing but without the CEB or the bag filter as the first step of the research. As the second step of the research, the impact of the backwashing on permeability recovery was assessed at different intervals followed by the influence of CEB on flowrate recovery. Results from operating the pilot-scale hollow-fiber membrane modules for more than 1 year have demonstrated that the appropriate pore size of bag filters was 25-50 µm and the optimized backwashing process was every 30 minutes with 25 mg/L of NaOCl, and CEB with an interval of 10 cycles with the use of 100 mg/L NaOCl.


Asunto(s)
Filtración/métodos , Presión , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Conductividad Eléctrica , Filtración/instrumentación , Membranas Artificiales , Permeabilidad , Porosidad , Reología , Hipoclorito de Sodio/análisis
3.
Chemosphere ; 310: 136910, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36270524

RESUMEN

Reverse osmosis (RO) membrane has been widely used in various water treatment fields as an efficient desalination technology, but serious biofouling problem arises in the actual application process. Curcumin is known as a natural compound that can reduce biofouling by inhibiting the growth of microorganisms based on quorum sensing. Dopamine, a molecule with excellent adhesion and functionalization on the material's surface, has high research value for applying a curcumin coating to the membrane surface. Curcumin degrades under alkaline conditions, whereas dopamine must polymerize under alkaline conditions. Simultaneously, a coating may adversely affect curcumin. Therefore, a two-step coating process was considered by self-polymerizing dopamine on the thin-film composite membrane surface and then dip-coating curcumin attached to the polydopamine layer. Furthermore, the effect of time and concentration on the surface modification before and after membrane modification was investigated. The highest permeability of 1.39 L/m2/hr/bar was achieved with the modified membranes. The number of gram-positive bacteria decreased from 6.71 × 106 to 9.67 × 105 CFU/mL. This result is meaningful for antifouling through modification of the membrane surface. Use of curcumin can be applied to reduce biofouling and extend the lifetime of the membrane without pretreatment or membrane cleaning.


Asunto(s)
Incrustaciones Biológicas , Curcumina , Purificación del Agua , Incrustaciones Biológicas/prevención & control , Curcumina/farmacología , Ósmosis , Membranas Artificiales , Dopamina
4.
Sci Rep ; 13(1): 11921, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488135

RESUMEN

The bone mineral density (BMD) measurement is a direct method of estimating human bone mass for diagnosing osteoporosis, and performed to objectively evaluate bone quality before implant surgery in dental clinics. The objective of this study was to validate the accuracy and reliability of BMD measurements made using quantitative cone-beam CT (CBCT) image based on deep learning by applying the method to clinical data from actual patients. Datasets containing 7500 pairs of CT and CBCT axial slice images from 30 patients were used to train a previously developed deep-learning model (QCBCT-NET). We selected 36 volumes of interest in the CBCT images for each patient in the bone regions of potential implants sites on the maxilla and mandible. We compared the BMDs shown in the quantitative CBCT (QCBCT) images with those in the conventional CBCT (CAL_CBCT) images at the various bone sites of interest across the entire field of view (FOV) using the performance metrics of the MAE, RMSE, MAPE (mean absolute percentage error), R2 (coefficient of determination), and SEE (standard error of estimation). Compared with the ground truth (QCT) images, the accuracy of the BMD measurements from the QCBCT images showed an RMSE of 83.41 mg/cm3, MAE of 67.94 mg/cm3, and MAPE of 8.32% across all the bone sites of interest, whereas for the CAL_CBCT images, those values were 491.15 mg/cm3, 460.52 mg/cm3, and 54.29%, respectively. The linear regression between the QCBCT and QCT images showed a slope of 1.00 and a R2 of 0.85, whereas for the CAL_CBCT images, those values were 0.32 and 0.24, respectively. The overall SEE between the QCBCT images and QCT images was 81.06 mg/cm3, whereas the SEE for the CAL_CBCT images was 109.32 mg/cm3. The QCBCT images thus showed better accuracy, linearity, and uniformity than the CAL_CBCT images across the entire FOV. The BMD measurements from the quantitative CBCT images showed high accuracy, linearity, and uniformity regardless of the relative geometric positions of the bone in the potential implant site. When applied to actual patient CBCT images, the CBCT-based quantitative BMD measurement based on deep learning demonstrated high accuracy and reliability across the entire FOV.


Asunto(s)
Aprendizaje Profundo , Osteoporosis , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Densidad Ósea , Reproducibilidad de los Resultados
5.
Chemosphere ; 239: 124696, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31726529

RESUMEN

Brine disposal is a major drawback for seawater desalination. Membrane distillation (MD) is an emerging technology to treat a high saline water including brine disposal instead of reverse osmosis, multi-stage flash and multi-effect distillation. This study investigated a pilot scale of a spiral-wound air gap MD (AGMD) module and evaluated its efficiency. A pilot-scale AGMD module with design production capacity of 10 m3/d was operated. Experiments with varying flow velocity showed increasing trend of water vapor flux as flow velocity increases. The temperature is one of the significant points in maximizing water permeate vapor flux in MD. Increasing temperature from 65 °C to 75 °C in evaporator channel has increased flux from 0.59 to 1.15 L/m2/h. Under various conditions, specific thermal energy consumption (STEC) and gained output ratio (GOR) was used to analyze energy efficiency. The pilot plant showed high GOR value in spite of a limited heating and cooling source available at the site. The highest GOR achieved was 3.54 with STEC of 182.78 kWh/m3. This study provides an overview of operation experience and its data analysis related to temperature, concentration, flow rate and energy supply.


Asunto(s)
Destilación/métodos , Membranas Artificiales , Sales (Química)/análisis , Purificación del Agua/métodos , Destilación/instrumentación , Calor , Ósmosis , Proyectos Piloto , Agua de Mar/química , Agua/química
6.
Environ Sci Pollut Res Int ; 27(2): 1677-1685, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31755056

RESUMEN

Several methods, such as pretreatment, membrane surface modification, feed water chlorination, and chemical cleaning, have recently been applied to control biofouling on reverse osmosis (RO) membranes-with limited success. As an alternative, compounds that inhibit bacterial quorum sensing can be used to disrupt formation of bacterial colonies. In this study, anti-biofouling using vanillin, which is a natural substance among quorum sensing inhibitor compounds, was trialed, by modifying RO membrane surfaces with vanillin, at various concentrations. We then reviewed consequential changes to membrane surface characteristics and vanillin anti-biofouling properties. A long-term RO membrane simulator was used to analyze permeability, contact angle was measured for hydrophilicity evaluation, and membrane surface morphology was analyzed, through atomic force microscopy and scanning electron microscopy. A quorum quenching effect was confirmed by utilizing Petrifilm to count bacteria on the surface of a modified membrane. As a result, the permeability of the surface modified membranes was slightly decreased compared to the pristine membrane, but the hydrophilicity was increased, and the number of colonies decreased remarkably, the membrane modified with 0.5 M vanillin outperforming that modified with 0.25 M vanillin.


Asunto(s)
Benzaldehídos/química , Incrustaciones Biológicas , Purificación del Agua , Biopelículas , Membranas Artificiales , Ósmosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA