Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Small ; 12(45): 6266-6278, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27717233

RESUMEN

Using small interfering RNA (siRNA) to regulate gene expression is an emerging strategy for stem cell manipulation to improve stem cell therapy. However, conventional methods of siRNA delivery into stem cells based on solution-mediated transfection are limited due to low transfection efficiency and insufficient duration of cell-siRNA contact during lengthy culturing protocols. To overcome these limitations, a bio-inspired polymer-mediated reverse transfection system is developed consisting of implantable poly(lactic-co-glycolic acid) (PLGA) scaffolds functionalized with siRNA-lipidoid nanoparticle (sLNP) complexes via polydopamine (pDA) coating. Immobilized sLNP complexes are stably maintained without any loss of siRNA on the pDA-coated scaffolds for 2 weeks, likely due to the formation of strong covalent bonds between amine groups of sLNP and catechol group of pDA. siRNA reverse transfection with the pDA-sLNP-PLGA system does not exhibit cytotoxicity and induces efficient silencing of an osteogenesis inhibitor gene in human adipose-derived stem cells (hADSCs), resulting in enhanced osteogenic differentiation of hADSCs. Finally, hADSCs osteogenically committed on the pDA-sLNP-PLGA scaffolds enhanced bone formation in a mouse model of critical-sized bone defect. Therefore, the bio-inspired reverse transfection system can provide an all-in-one platform for genetic modification, differentiation, and transplantation of stem cells, simultaneously enabling both stem cell manipulation and tissue engineering.


Asunto(s)
Tejido Adiposo/citología , Diferenciación Celular/fisiología , Osteogénesis/fisiología , Células Madre/citología , Regeneración Ósea/genética , Regeneración Ósea/fisiología , Diferenciación Celular/genética , Humanos , Ácido Láctico/química , Osteogénesis/genética , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , ARN Interferente Pequeño/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
3.
Adv Mater ; 32(16): e1907225, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32157771

RESUMEN

Cell sheet engineering, a technique utilizing a monolayer cell sheet, has recently emerged as a promising technology for scaffold-free tissue engineering. In contrast to conventional tissue-engineering approaches, the cell sheet technology allows cell harvest as a continuous cell sheet with intact extracellular matrix proteins and cell-cell junction, which facilitates cell transplantation without any other artificial biomaterials. A facile, non-thermoresponsive method is demonstrated for a rapid but highly reliable platform for cell-sheet engineering. The developed method exploits the precise modulation of cell-substrate interactions by controlling the surface energy of the substrate via a series of functional polymer coatings to enable prompt cell sheet harvesting within 100 s. The engineered surface can trigger an intrinsic cellular response upon the depletion of divalent cations, leading to spontaneous cell sheet detachment under physiological conditions (pH 7.4 and 37 °C) in a non-thermoresponsive manner. Additionally, the therapeutic potential of the cell sheet is successfully demonstrated by the transplantation of multilayered cell sheets into mouse models of diabetic wounds and ischemia. These findings highlight the ability of the developed surface for non-thermoresponsive cell sheet engineering to serve as a robust platform for regenerative medicine and provide significant breakthroughs in cell sheet technology.


Asunto(s)
Polímeros/química , Ingeniería de Tejidos/métodos , Adsorción , Fibronectinas/química , Propiedades de Superficie , Temperatura , Factores de Tiempo
4.
Nat Commun ; 9(1): 5402, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30573732

RESUMEN

The fabrication of functional tissues is essential for clinical applications such as disease treatment and drug discovery. Recent studies have revealed that the mechanical environments of tissues, determined by geometric cell patterns, material composition, or mechanical properties, play critical roles in ensuring proper tissue function. Here, we propose an acoustophoretic technique using surface acoustic waves to fabricate therapeutic vascular tissue containing a three-dimensional collateral distribution of vessels. Co-aligned human umbilical vein endothelial cells and human adipose stem cells that are arranged in a biodegradable catechol-conjugated hyaluronic acid hydrogel exhibit enhanced cell-cell contacts, gene expression, and secretion of angiogenic and anti-inflammatory paracrine factors. The therapeutic effects of the fabricated vessel constructs are demonstrated in experiments using an ischemia mouse model by exhibiting the remarkable recovery of damaged tissue. Our study can be referenced to fabricate various types of artificial tissues that mimic the original functions as well as structures.


Asunto(s)
Isquemia/patología , Ingeniería de Tejidos/métodos , Adipocitos/citología , Animales , Vasos Sanguíneos , Técnicas de Cocultivo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ácido Hialurónico , Hidrogel de Polietilenoglicol-Dimetacrilato , Ratones , Ratones Endogámicos BALB C , Sonido , Células Madre/citología , Ingeniería de Tejidos/instrumentación , Andamios del Tejido
5.
Biotechnol J ; 12(12)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28925552

RESUMEN

Classical bone tissue engineering involves the use of culture-expanded cells and scaffolds to produce tissue constructs for transplantation. Despite promising results, clinical adoption of these constructs has been limited due to various drawbacks, including extensive cell expansion steps, low cell survival rate upon transplantation, and the possibility of immuno-rejection. To bypass the ex vivo cell culture and transplantation process, the regenerative capacity of the host is exploited by mobilizing endogenous stem cells to the site of injury. Systemic injection of substance P (SP) induce mobilization of CD29+ CD105+ CD45- cells from bone marrow and enhance bone tissue regeneration in a critical-sized calvarial bone defect model. To provide an appropriate environment for endogenous stem cells to survive and differentiate into osteogenic lineage cells, electrospun nanofibrous polycaprolactone (PCL) scaffolds are functionalized with hydroxyapatite (HA) particles via a polydopamine (PDA) coating to create highly osteoinductive PCL-PDA-HA scaffolds that are implanted in defects. The combination of the PCL-PDA-HA scaffold and SP treatment enhance in situ bone tissue formation in defects. Thus, this in situ bone regeneration strategy, which combines recruitment of endogenous stem cells from the bone marrow to defective sites and implantation of a highly biocompatible and osteoinductive cell-free scaffold system, has potential as an effective therapeutic in regenerative medicine.


Asunto(s)
Regeneración Ósea/fisiología , Huesos , Nanofibras/química , Cráneo/lesiones , Ingeniería de Tejidos/métodos , Andamios del Tejido , Animales , Huesos/citología , Huesos/fisiología , Técnicas de Cultivo de Célula , Proliferación Celular , Células Cultivadas , Ratones , Osteogénesis/fisiología , Poliésteres/química , Células Madre/citología
6.
Biomaterials ; 50: 127-39, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25736503

RESUMEN

Current protocols for human pluripotent stem cell (hPSC) expansion require feeder cells or matrices from animal sources that have been the major obstacle to obtain clinical grade hPSCs due to safety issues, difficulty in quality control, and high expense. Thus, feeder-free, chemically defined synthetic platforms have been developed, but are mostly confined to typical polystyrene culture plates. Here, we report a chemically defined, material-independent, bio-inspired surface coating allowing for feeder-free expansion and maintenance of self-renewal and pluripotency of hPSCs on various polymer substrates and devices. Polydopamine (pDA)-mediated immobilization of vitronectin (VN) peptides results in surface functionalization of VN-dimer/pDA conjugates. The engineered surfaces facilitate adhesion, proliferation, and colony formation of hPSCs via enhanced focal adhesion, cell-cell interaction, and biophysical signals, providing a chemically defined, xeno-free culture system for clonal expansion and long-term maintenance of hPSCs. This surface engineering enables the application of clinically-relevant hPSCs to a variety of biomedical systems such as tissue-engineering scaffolds and medical devices.


Asunto(s)
Materiales Biomiméticos/farmacología , Autorrenovación de las Células/efectos de los fármacos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Vitronectina/farmacología , Secuencia de Aminoácidos , Comunicación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Clonales , Embrión de Mamíferos/citología , Embrión de Mamíferos/efectos de los fármacos , Células Nutrientes/citología , Células Nutrientes/efectos de los fármacos , Adhesiones Focales/efectos de los fármacos , Humanos , Indoles/química , Datos de Secuencia Molecular , Polímeros/química , Transducción de Señal/efectos de los fármacos , Propiedades de Superficie , Vitronectina/química
7.
Adv Healthc Mater ; 3(9): 1457-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24523050

RESUMEN

Neural stem cells (NSCs) reside in a vascular microenvironment termed the "NSC niche." Blood vessels in the NSC niche play an important role in maintaining an appropriate balance between NSC self-renewal and differentiation that serves to maintain homeostasis. Understanding the role of brain vessels in the NSC niche will facilitate basic research in neurogenesis and vasculogenesis as well as aid the development of potential therapies for degenerative disorders. Here, an in vitro-reconstituted NSC-vascular niche consisting of a 3D brain vasculature and extracellular matrix (ECM) microenvironment that allows NSCs to adopt physiologically relevant phenotypes through the combined effects of ECM components, chemical gradients, and signaling effectors from the brain vasculature is described. The reconstituted niche can provide precise spatiotemporal control of the NSC niche, regulating self-renewal, proliferation and colony formation of NSCs, and suppressing neuronal generation but promoting NSC differentiation into astrocytes and oligodendrocytes. It is proved that Notch effectors regulate both the astrocyte differentiation and NSC self-renewal, but the astrocyte differentiation is more active in NSCs in close proximity to brain vasculature. A potential role of the other vascular microenvironmental factor of pigment epithelium-derived factor from brain vasculature in the regulation of NSC self-renewal is also proved.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Proteínas de la Matriz Extracelular/química , Modelos Biológicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Nicho de Células Madre/fisiología , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Encéfalo/irrigación sanguínea , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Línea Celular , Supervivencia Celular , Proteínas de la Matriz Extracelular/metabolismo , Ratones , Técnicas Analíticas Microfluídicas , Microvasos/fisiología
8.
Biomaterials ; 33(35): 9148-56, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23018131

RESUMEN

Biodegradable cationic poly(ß-amino esters) (PBAE) nanoparticles are promising tools for delivering genes into various types of cells and tissues. Specific end-modification of the PBAE terminal parts significantly improves the efficiency of gene delivery in vitro and in vivo, and reduces cytotoxicity. Here, we demonstrated that amine end-modified PBAE nanoparticles can be used for intradermal delivery of therapeutic genes for wound healing in an animal skin wound model. Sonic hedgehog (SHH), a prototypical morphogen with angiogenic potential, was applied as a therapeutic gene to regenerate skin tissue. Amine end-modified PBAEs showed higher gene transfection efficiency in vitro than the commercial reagent, Lipofectamine 2000. Intradermal delivery of the SHH gene using amine end-modified PBAEs was tested in a readout mouse model of SHH signaling. We evaluated its therapeutic efficacy in mice with full-thickness skin wounds. SHH gene therapy significantly increased the expression of the angiogenic growth factor, vascular endothelial growth factor, and the stromal cell-derived factor-1α chemokine within the wounded regions early after injection. Ultimately, wound closure was accelerated in mice receiving the PBAE/SHH gene therapy compared to mice receiving intradermal delivery of a control gene (ß-galactosidase plasmid) by PBAE nanoparticles. Quantitative real-time polymerase chain reaction and histological analysis revealed that there were significant improvements in epidermis regeneration and blood vessel formation in the mice treated with PBAE/SHH nanoparticles. In conclusion, SHH intradermal gene therapy using biodegradable PBAE nanoparticles is a potential treatment to promote wound healing.


Asunto(s)
Terapia Genética/métodos , Proteínas Hedgehog/uso terapéutico , Nanopartículas/química , Polímeros/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Biodegradación Ambiental , Cationes/química , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Femenino , Proteínas Hedgehog/genética , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Modelos Animales , Plásmidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Piel/efectos de los fármacos , Piel/lesiones , Transfección , Factores de Crecimiento Endotelial Vascular/genética , Factores de Crecimiento Endotelial Vascular/metabolismo , beta-Galactosidasa/metabolismo
9.
J Control Release ; 160(3): 515-24, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22450331

RESUMEN

Cell therapy holds promise as a method for the treatment of ischemic disease. However, one significant challenge to the efficacy of cell therapy is poor cell survival in vivo. Here we describe a non-viral, gene therapy approach to improve the survival and engraftment of cells transplanted into ischemic tissue. We have developed biodegradable poly(ß-amino esters) (PBAE) nanoparticles as vehicles to genetically modify human umbilical vein endothelial cells (HUVECs) with vascular endothelial growth factor (VEGF). VEGF transfection using these nanoparticles significantly enhanced VEGF expression in HUVECs, compared with a commercially-available transfection reagent. Transfection resulted in the upregulation of survival factors, and improved viability under simulated ischemic conditions. In a mouse model of hindlimb ischemia, VEGF nanoparticle transfection promoted engraftment of HUVECs into mouse vasculature as well as survival of transplanted HUVECs in ischemic tissues, leading to improved angiogenesis and ischemic limb salvage. This study demonstrates that biodegradable polymer nanoparticles may provide a safe and effective method for genetic engineering of endothelial cells to enhance therapeutic angiogenesis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Isquemia/terapia , Neovascularización Fisiológica , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/fisiología , Animales , Femenino , Miembro Posterior , Humanos , Isquemia/metabolismo , Ratones , Ratones Desnudos , Músculo Esquelético/patología , Nanopartículas/administración & dosificación , Nanopartículas/química , Plásmidos , Polímeros/administración & dosificación , Polímeros/química , Transfección/métodos , Factor A de Crecimiento Endotelial Vascular/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA