Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Glia ; 68(9): 1794-1809, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32077526

RESUMEN

Finding causative genetic mutations is important in the diagnosis and treatment of hereditary peripheral neuropathies. This study was conducted to find new genes involved in the pathophysiology of hereditary peripheral neuropathy. We identified a new mutation in the EBP50 gene, which is co-segregated with neuropathic phenotypes, including motor and sensory deficit in a family with Charcot-Marie-Tooth disease. EBP50 is known to be important for the formation of microvilli in epithelial cells, and the discovery of this gene mutation allowed us to study the function of EBP50 in the nervous system. EBP50 was strongly expressed in the nodal and paranodal regions of sciatic nerve fibers, where Schwann cell microvilli contact the axolemma, and at the growth tips of primary Schwann cells. In addition, EBP50 expression was decreased in mouse models of peripheral neuropathy. Knockout mice were used to study EBP50 function in the peripheral nervous system. Interestingly motor function deficit and abnormal histology of nerve fibers were observed in EBP50+/- heterozygous mice at 12 months of age, but not 3 months. in vitro studies using Schwann cells showed that NRG1-induced AKT activation and migration were significantly reduced in cells overexpressing the I325V mutant of EBP50 or cells with knocked-down EBP50 expression. In conclusion, we show for the first time that loss of function due to EBP50 gene deficiency or mutation can cause peripheral neuropathy.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Ratones , Ratones Noqueados , Mutación , Nervios Periféricos , Sistema Nervioso Periférico
2.
Korean J Intern Med ; 39(4): 590-602, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910513

RESUMEN

BACKGROUND/AIMS: Recent research has increasingly focused on the role of the gastric microbiome in the development of gastric cancer. We aimed to investigate the changes in the microbiome during gastric carcinogenesis in structural and functional aspects, with a specific focus on the association between oral and gastric microbiomes. METHODS: We collected saliva, gastric juice, and gastric tissue samples from 141 patients at different stages of gastric carcinogenesis and processed them for microbiome analysis using 16S rRNA gene profiling. The alpha and beta diversities were analyzed, and the differences in microbiome composition and function profiles were analyzed among the groups, as well as the correlation between changes in the oral and gastric microbiomes during carcinogenesis. RESULTS: We observed significant differences in microbial diversity and composition between the disease and control groups, primarily in the gastric juice. Specific bacterial strains, including Schaalia odontolytica, Streptococcus cristatus, and Peptostreptococcus stomatis, showed a significant increase in abundance in the gastric juice in the low-grade dysplasia and gastric cancer groups. Notably, the correlation between the oral and gastric microbiota compositions, increased as the disease progressed. Predictive analysis of the metagenomic functional profiles revealed changes in functional pathways that may be associated with carcinogenesis (ABC transport and two-component systems). CONCLUSION: During gastric carcinogenesis, the abundance of oral commensals associated with cancer increased in the stomach. The similarity in microbial composition between the stomach and oral cavity also increased, implying a potential role of oral-gastric bacterial interactions in gastric cancer development.


Asunto(s)
Jugo Gástrico , Microbioma Gastrointestinal , Saliva , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/microbiología , Persona de Mediana Edad , Masculino , Femenino , Jugo Gástrico/microbiología , Anciano , Saliva/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Ribotipificación , ARN Ribosómico 16S/genética , Boca/microbiología , Adulto , Estudios de Casos y Controles , Mucosa Gástrica/microbiología , Carcinogénesis , Estómago/microbiología , Metagenómica
3.
Mol Pharm ; 8(2): 430-8, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21222482

RESUMEN

Targeted delivery of imaging agents and therapeutics to tumors would provide early detection and increased therapeutic efficacy against cancer. Here we have screened a phage-displayed peptide library to identify peptides that selectively bind to lung tumor cells. Evaluation of individual phage clones after screening revealed that a phage clone displaying the CSNIDARAC peptide bound to H460 lung tumor cells at higher extent than other phage clones. The synthetic CSNIDARAC peptide strongly bound to H460 cells and was efficiently internalized into the cells, while little binding of a control peptide was seen. It also preferentially bound to other lung tumor cell lines as compared to cells of different tumor types. In vivo imaging of lung tumor was achieved by homing of fluorescence dye-labeled CSNIDARAC peptide to the tumor after intravenous injection into mice. Ex vivo imaging and microscopic analysis of isolated organs further demonstrated the targeting of CSNIDARAC peptide to tumor. The CSNIDARAC peptide-targeted and doxorubicin-loaded liposomes inhibited the tumor growth more efficiently than untargeted liposomes or free doxorubicin. In vivo imaging of fluorescence dye-labeled liposomes demonstrated selective homing of the CSNIDARAC-liposomes to tumor. In the same context, higher levels of doxorubicin and apoptosis in tumor tissue were observed when treated with the targeted liposomes than untargeted liposomes or free doxorubicin. These results suggest that the CSNIDARAC peptide is a promising targeting probe that is able to direct imaging agents and therapeutics to lung tumor.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Fragmentos de Péptidos/administración & dosificación , Animales , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Procesamiento de Imagen Asistido por Computador , Técnicas para Inmunoenzimas , Liposomas , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fragmentos de Péptidos/farmacocinética , Biblioteca de Péptidos , Distribución Tisular , Células Tumorales Cultivadas
4.
Cancer Res ; 79(16): 4271-4282, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31243044

RESUMEN

The lack of molecular targets and targeting probes remains a major drawback for targeted imaging and drug delivery in lung cancer. In this study, we exploited in vivo phage display to identify a novel targeting probe that homes to the tumor in a K-rasLA2 mutant mouse lung cancer model. Compared with other candidate peptides selected from 5 rounds of phage display, the CRQTKN peptide homed to tumor nodules in the lung of mutant mice at higher levels. Photoacoustic tomography of mutant mice detected lung tumors via tumor homing of the near-infrared fluorescence dye-labeled CRQTKN peptide. Ex vivo photoacoustic images of isolated organs further demonstrated tumor homing of the CRQTKN peptide, whereas minimal accumulation was observed in control organs, such as the liver. Compared with untargeted liposomes and doxorubicin, doxorubicin-loaded liposomes whose surface was modified with the CRQTKN peptide more efficiently delivered doxorubicin and reduced the number or size of tumor lesions in K-rasLA2 mutant mice. Analysis of hematologic parameters and liver and kidney function showed no significant systemic side effects by the treatments. Affinity-based identification was used to detect TNF receptor superfamily member 19L (TNFRSF19L), which was upregulated in lung tumors of mutant mice, as the receptor for the CRQTKN peptide. In conclusion, these results suggest that the CRQTKN peptide is a promising targeting probe for photoacoustic-guided detection and drug delivery to lung cancer, and acts by binding to TNFRSF19L. SIGNIFICANCE: These findings present a new tumor-targeting probe for photoacoustic-guided detection and drug delivery.


Asunto(s)
Neoplasias Pulmonares/diagnóstico por imagen , Péptidos/administración & dosificación , Técnicas Fotoacústicas/métodos , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Doxorrubicina/administración & dosificación , Sistemas de Liberación de Medicamentos , Humanos , Liposomas/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL , Ratones Mutantes , Biblioteca de Péptidos , Péptidos/farmacocinética , Receptores del Factor de Necrosis Tumoral/análisis , Receptores del Factor de Necrosis Tumoral/metabolismo
5.
J Control Release ; 209: 327-36, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25979323

RESUMEN

A growing body of evidence suggests that pathological lesions express tissue-specific molecular targets or biomarkers within the tissue. Interleukin-4 receptor (IL-4R) is overexpressed in many types of cancer cells, including lung cancer. Here we investigated the properties of IL-4R-binding peptide-1 (IL4RPep-1), a CRKRLDRNC peptide, and its ability to target the delivery of liposomes to lung tumor. IL4RPep-1 preferentially bound to H226 lung tumor cells which express higher levers of IL-4R compared to H460 lung tumor cells which express less IL-4R. Mutational analysis revealed that C1, R2, and R4 residues of IL4RPep-1 were the key binding determinants. IL4RPep-1-labeled liposomes containing doxorubicin were more efficiently internalized in H226 cells and effectively delivered doxorubicin into the cells compared to unlabeled liposomes. In vivo fluorescence imaging of nude mice subcutaneously xenotransplanted with H226 tumor cells indicated that IL4RPep-1-labeled liposomes accumulate more efficiently in the tumor and inhibit tumor growth more effectively compared to unlabeled liposomes. Interestingly, expression of IL-4R was high in vascular endothelial cells of tumor, while little was detected in vascular endothelial cells of control organs including the liver. IL-4R expression in cultured human vascular endothelial cells was also up-regulated when activated by a pro-inflammatory cytokine tumor necrosis factor-α. Moreover, the up-regulation of IL-4R expression was observed in primary human lung cancer tissues. These results indicate that IL-4R-targeting nanocarriers may be a useful strategy to enhance drug delivery through the recognition of IL-4R in both tumor cells and tumor endothelial cells.


Asunto(s)
Neoplasias Pulmonares/metabolismo , Oligopéptidos/administración & dosificación , Receptores de Interleucina-4/metabolismo , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Liposomas , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Desnudos , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico
6.
J Adv Prosthodont ; 4(4): 218-26, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23236574

RESUMEN

PURPOSE: The purpose of this study was to propose finite element (FE) modeling methods for predicting stress distributions on teeth and mandible under chewing action. MATERIALS AND METHODS: For FE model generation, CT images of skull were translated into 3D FE models, and static analysis was performed considering linear material behaviors and nonlinear geometrical effect. To find out proper boundary and loading conditions, parametric studies were performed with various areas and directions of restraints and loading. The loading directions are prescribed to be same as direction of masseter muscle, which was referred from anatomy chart and CT image. From the analysis, strain and stress distributions of teeth and mandible were obtained and compared with experimental data for model validation. RESULTS: As a result of FE analysis, the optimized boundary condition was chosen such that 8 teeth were fixed in all directions and condyloid process was fixed in all directions except for forward and backward directions. Also, fixing a part of mandible in a lateral direction, where medial pterygoid muscle was attached, gave the more proper analytical results. Loading was prescribed in a same direction as masseter muscle. The tendency of strain distributions between the teeth predicted from the proposed model were compared with experimental results and showed good agreements. CONCLUSION: This study proposes cost efficient FE modeling method for predicting stress distributions on teeth and mandible under chewing action. The proposed modeling method is validated with experimental data and can further be used to evaluate structural safety of dental prosthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA