Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 16(36): e1907693, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32643290

RESUMEN

Current investigations into hazardous nanoparticles (i.e., nanotoxicology) aim to understand the working mechanisms that drive toxicity. This understanding has been used to predict the biological impact of the nanocarriers as a function of their synthesis, material composition, and physicochemical characteristics. It is particularly critical to characterize the events that immediately follow cell stress resulting from nanoparticle internalization. While reactive oxygen species and activation of autophagy are universally recognized as mechanisms of nanotoxicity, the progression of these phenomena during cell recovery has yet to be comprehensively evaluated. Herein, primary human endothelial cells are exposed to controlled concentrations of polymer-functionalized silica nanoparticles to induce lysosomal damage and achieve cytosolic delivery. In this model, the recovery of cell functions lost following endosomal escape is primarily represented by changes in cell distribution and the subsequent partitioning of particles into dividing cells. Furthermore, multilamellar bodies are found to accumulate around the particles, demonstrating progressive endosomal escape. This work provides a set of biological parameters that can be used to assess cell stress related to nanoparticle exposure and the subsequent recovery of cell processes as a function of endosomal escape.


Asunto(s)
Células Endoteliales , Nanopartículas , Polímeros , Dióxido de Silicio , Línea Celular , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Modelos Biológicos , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Polímeros/química , Dióxido de Silicio/toxicidad
2.
Sci Rep ; 10(1): 172, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932600

RESUMEN

Despite recent advances in drug delivery, the targeted treatment of unhealthy cells or tissues continues to remain a priority. In cancer (much like other pathologies), delivery vectors are designed to exploit physical and biological features of unhealthy tissues that are not always homogenous across the disease. In some cases, shifting the target from unhealthy tissues to the whole organ can represent an advantage. Specifically, the natural organ-specific retention of nanotherapeutics following intravenous administration as seen in the lung, liver, and spleen can be strategically exploited to enhance drug delivery. Herein, we outline the development of a cell-based delivery system using macrophages as a delivery vehicle. When loaded with a chemotherapeutic payload (i.e., doxorubicin), these cellular vectors (CELVEC) were shown to provide continued release within the lung. This study provides proof-of-concept evidence of an alternative class of biomimetic delivery vectors that capitalize on cell size to provide therapeutic advantages for pulmonary treatments.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Biomimética , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Pulmón/metabolismo , Macrófagos/química , Animales , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Liberación de Fármacos , Liposomas , Pulmón/citología , Masculino , Ratones , Ratones Desnudos , Distribución Tisular
3.
Int J Nanomedicine ; 11: 3049-63, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445473

RESUMEN

A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes' physical properties and, consequently, liposome-liposome and liposome-cell interactions.


Asunto(s)
Comunicación Celular , Liposomas/química , Corona de Proteínas/química , Adsorción , Animales , Proteínas Sanguíneas/metabolismo , Línea Celular Tumoral , Microscopía por Crioelectrón , Dispersión Dinámica de Luz , Endocitosis , Citometría de Flujo , Humanos , Ratones Endogámicos BALB C , Microscopía de Fuerza Atómica , Nanopartículas/química , Proteómica
4.
Biomaterials ; 87: 57-68, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26901429

RESUMEN

This report describes a novel, one-pot synthesis of hybrid nanoparticles formed by a nanostructured inorganic silica core and an organic pH-responsive hydrogel shell. This easy-to-perform, oil-in-water emulsion process synthesizes fluorescently-doped silica nanoparticles wrapped within a tunable coating of cationic poly(2-diethylaminoethyl methacrylate) hydrogel in one step. Transmission electron microscopy and dynamic light scattering analysis demonstrated that the hydrogel-coated nanoparticles are uniformly dispersed in the aqueous phase. The formation of covalent chemical bonds between the silica and the polymer increases the stability of the organic phase around the inorganic core as demonstrated by thermogravimetric analysis. The cationic nature of the hydrogel is responsible for the pH buffering properties of the nanostructured system and was evaluated by titration experiments. Zeta-potential analysis demonstrated that the charge of the system was reversed when transitioned from acidic to basic pH and vice versa. Consequently, small interfering RNA (siRNA) can be loaded and released in an acidic pH environment thereby enabling the hybrid particles and their payload to avoid endosomal sequestration and enzymatic degradation. These nanoparticles, loaded with specific siRNA molecules directed towards the transcript of the membrane receptor CXCR4, significantly decreased the expression of this protein in a human breast cancer cell line (i.e., MDA-MB-231). Moreover, intravenous administration of siRNA-loaded nanoparticles demonstrated a preferential accumulation at the tumor site that resulted in a reduction of CXCR4 expression.


Asunto(s)
Neoplasias de la Mama/terapia , Mama/patología , Preparaciones de Acción Retardada/química , Nanopartículas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/uso terapéutico , Tratamiento con ARN de Interferencia , Animales , Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Cationes/química , Línea Celular Tumoral , Femenino , Humanos , Metacrilatos/química , Ratones Desnudos , Polímeros/química , ARN Interferente Pequeño/genética , Receptores CXCR4/genética , Dióxido de Silicio/química
5.
Biomaterials ; 82: 168-77, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26761780

RESUMEN

Recently, engineering the surface of nanotherapeutics with biologics to provide them with superior biocompatibility and targeting towards pathological tissues has gained significant popularity. Although the functionalization of drug delivery vectors with cellular materials has been shown to provide synthetic particles with unique biological properties, these approaches may have undesirable immunological repercussions upon systemic administration. Herein, we comparatively analyzed unmodified multistage nanovectors and particles functionalized with murine and human leukocyte cellular membrane, dubbed Leukolike Vectors (LLV), and the immunological effects that may arise in vitro and in vivo. Previously, LLV demonstrated an avoidance of opsonization and phagocytosis, in addition to superior targeting of inflammation and prolonged circulation. In this work, we performed a comprehensive evaluation of the importance of the source of cellular membrane in increasing their systemic tolerance and minimizing an inflammatory response. Time-lapse microscopy revealed LLV developed using a cellular coating derived from a murine (i.e., syngeneic) source resulted in an active avoidance of uptake by macrophage cells. Additionally, LLV composed of a murine membrane were found to have decreased uptake in the liver with no significant effect on hepatic function. As biomimicry continues to develop, this work demonstrates the necessity to consider the source of biological material in the development of future drug delivery carriers.


Asunto(s)
Materiales Biocompatibles/toxicidad , Materiales Biomiméticos/toxicidad , Inmunidad Innata/inmunología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Nanocápsulas/toxicidad , Animales , Células Cultivadas , Ratones , Ratones Endogámicos BALB C
6.
Nanomedicine (Lond) ; 10(12): 1923-40, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26139126

RESUMEN

Nanocarriers are designed to specifically accumulate in diseased tissues. In this context, targeting of intracellular compartments was shown to enhance the efficacy of many drugs and to offer new and more effective therapeutic approaches. This is especially true for therapies based on biologicals that must be encapsulated to favor cell internalization, and to avoid intracellular endosomal sequestration and degradation of the payload. In this review, we discuss specific surface modifications designed to achieve cell cytoplasm delivery and to improve targeting of major organelles; we also discuss the therapeutic applications of these approaches. Last, we describe some integrated strategies designed to sequentially overcome the biological barriers that separate the site of administration from the cell cytoplasm, which is the drug's site of action.


Asunto(s)
Citoplasma/química , Nanocápsulas/química , Orgánulos/química , Animales , Materiales Biocompatibles Revestidos/síntesis química , Diseño de Fármacos , Humanos , Ensayo de Materiales , Nanocápsulas/ultraestructura , Propiedades de Superficie
7.
Nat Nanotechnol ; 8(1): 61-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23241654

RESUMEN

The therapeutic efficacy of systemic drug-delivery vehicles depends on their ability to evade the immune system, cross the biological barriers of the body and localize at target tissues. White blood cells of the immune system--known as leukocytes--possess all of these properties and exert their targeting ability through cellular membrane interactions. Here, we show that nanoporous silicon particles can successfully perform all these actions when they are coated with cellular membranes purified from leukocytes. These hybrid particles, called leukolike vectors, can avoid being cleared by the immune system. Furthermore, they can communicate with endothelial cells through receptor-ligand interactions, and transport and release a payload across an inflamed reconstructed endothelium. Moreover, leukolike vectors retained their functions when injected in vivo, showing enhanced circulation time and improved accumulation in a tumour.


Asunto(s)
Biomimética/métodos , Leucocitos/química , Membranas Artificiales , Modelos Biológicos , Nanopartículas/química , Animales , Transporte Biológico , Adhesión Celular , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Leucocitos/metabolismo , Hígado/química , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/química , Neoplasias Hepáticas Experimentales/metabolismo , Ratones , Ratones Endogámicos C57BL , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA