Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Biol Evol ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37498334

RESUMEN

To elucidate the genomic traits of ecological diversification in the Hymenochaetales, we sequenced 15 new genomes, with attention to ectomycorrhizal (EcM) Coltricia species. Together with published data, 32 genomes, including 31 Hymenochaetales and one outgroup, were comparatively analyzed in total. Compared with those of parasitic and saprophytic members, EcM species have significantly reduced number of plant cell wall degrading enzyme genes, and expanded transposable elements, genome sizes, small secreted proteins, and secreted proteases. EcM species still retain some of secreted carbohydrate-active enzymes (CAZymes) and have lost the key secreted CAZymes to degrade lignin and cellulose, while possess a strong capacity to degrade a microbial cell wall containing chitin and peptidoglycan. There were no significant differences in secreted CAZymes between fungi growing on gymnosperms and angiosperms, suggesting that the secreted CAZymes in the Hymenochaetales evolved before differentiation of host trees into gymnosperms and angiosperms. Nevertheless, parasitic and saprophytic species of the Hymenochaetales are very similar in many genome features, which reflect their close phylogenetic relationships both being white rot fungi. Phylogenomic and molecular clock analyses showed that the EcM genus Coltricia formed a clade located at the base of the Hymenochaetaceae and divergence time later than saprophytic species. And Coltricia remains one to two genes of AA2 family. These indicate that the ancestors of Coltricia appear to have originated from saprophytic ancestor with the ability to cause a white rot. This study provides new genomic data for EcM species and insights into the ecological diversification within the Hymenochaetales based on comparative genomics and phylogenomics analyses.


Asunto(s)
Basidiomycota , Micorrizas , Filogenia , Genómica , Lignina/metabolismo
2.
Appl Biochem Biotechnol ; 178(6): 1196-206, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26634840

RESUMEN

Enzymatic hydrolysis of cellulosic raw materials to produce nutrient broths for microbiological synthesis of ethanol and other valuable products is an important field of modern biotechnology. Biotechnological processing implies the selection of an effective pretreatment technique for raw materials. In this study, the hydrotropic treatment increased the reactivity of the obtained substrates toward enzymatic hydrolysis by 7.1 times for Miscanthus and by 7.3 times for oat hulls. The hydrotropic pulp from oat hulls was more reactive toward enzymatic hydrolysis compared to that from Miscanthus, despite that the substrates had similar compositions. As the initial substrate loadings were raised during enzymatic hydrolysis of the hydrotropic Miscanthus and oat hull pulps, the concentration of reducing sugars increased by 34 g/dm(3) and the yield of reducing sugars decreased by 31 %. The findings allow us to predict the efficiency of enzymatic hydrolysis of hydrotropic pulps from Miscanthus and oat hulls when scaling up the process by volume.


Asunto(s)
Celulasa/química , Celulosa/química , Hidrólisis , Microscopía Electrónica de Rastreo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA