Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 13: 1170505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153150

RESUMEN

Background: Low temperature is conducive to the survival of COVID-19. Some studies suggest that cold-chain environment may prolong the survival of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and increase the risk of transmission. However, the effect of cold-chain environmental factors and packaging materials on SARS-CoV-2 stability remains unclear. Methods: This study aimed to reveal cold-chain environmental factors that preserve the stability of SARS-CoV-2 and further explore effective disinfection measures for SARS-CoV-2 in the cold-chain environment. The decay rate of SARS-CoV-2 pseudovirus in the cold-chain environment, on various types of packaging material surfaces, i.e., polyethylene plastic, stainless steel, Teflon and cardboard, and in frozen seawater was investigated. The influence of visible light (wavelength 450 nm-780 nm) and airflow on the stability of SARS-CoV-2 pseudovirus at -18°C was subsequently assessed. Results: Experimental data show that SARS-CoV-2 pseudovirus decayed more rapidly on porous cardboard surfaces than on nonporous surfaces, including polyethylene (PE) plastic, stainless steel, and Teflon. Compared with that at 25°C, the decay rate of SARS-CoV-2 pseudovirus was significantly lower at low temperatures. Seawater preserved viral stability both at -18°C and with repeated freeze-thaw cycles compared with that in deionized water. Visible light from light-emitting diode (LED) illumination and airflow at -18°C reduced SARS-CoV-2 pseudovirus stability. Conclusion: Our studies indicate that temperature and seawater in the cold chain are risk factors for SARS-CoV-2 transmission, and LED visible light irradiation and increased airflow may be used as disinfection measures for SARS-CoV-2 in the cold-chain environment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Refrigeración , Desinfección , Acero Inoxidable , Plásticos , Politetrafluoroetileno , Polietilenos
2.
ACS Appl Mater Interfaces ; 13(18): 21272-21285, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33940792

RESUMEN

Although eco-friendly amidoxime-based adsorbents own an excellent uranium (U)-adsorption capacity, their U-adsorption efficiency is commonly reduced and even damaged by the biological adhesion from bacteria/microorganisms in an aqueous environment. Herein, we present an antibiofouling ultrathin poly(amidoxime) membrane (AUPM) with highly enhanced U-adsorption performance, through dispersing the quaternized chitosan (Q-CS) and poly(amidoxime) in a cross-linked sulfonated cellulose nanocrystals (S-CNC) network. The cross-linked S-CNC not only can elevate the hydrophilicity to improve the U-adsorption efficiency of AUPM but also can enhance the mechanical strength to form a self-supporting ultrathin membrane (17.21 MPa, 10 µm thickness). More importantly, this AUPM owns a good antibiofouling property, owing to the broad-spectrum antibacterial quaternary ammonium groups of the Q-CS. As a result, within the 1.00 L of low-concentration (100 ppb) U-added pure water (pH ≈ 5) and seawater (pH ≈ 8) for 48 h, 30 mg of AUPM can recover 93.7% U and 91.4% U, respectively. Furthermore, compared with the U-absorption capacity of a blank membrane without the Q-CS, that of AUPM can significantly increase 37.4% reaching from 6.39 to 8.78 mg/g after being in natural seawater for only 25 d. Additionally, this AUPM can still maintain almost constant tensile strength during 10 cycles of adsorption-desorption, which indicates the relatively long-term usability of AUPM. This AUPM will be a promising candidate for highly efficient and large-scale U-recovery from both U-containing waste freshwater/seawater and natural seawater, which will be greatly helpful to deal with the U-pollution and enrich U for the consumption of nuclear power. More importantly, the work will provide a new convenient but universal strategy to fabricate new highly enhanced low-cost U-adsorbents, through the introduction of both an antibacterial property and a high mechanical performance, which will be a good reference for the design of new highly efficient U-adsorbents.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Membranas Artificiales , Oximas/química , Polímeros/química , Agua de Mar/química , Uranio/aislamiento & purificación , Aguas Residuales/química , Adsorción , Uranio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA