Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 15: 1126, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25516098

RESUMEN

BACKGROUND: Sheepgrass (Leymus chinensis) is an important perennial forage grass across the Eurasian Steppe and is adaptable to various environmental conditions, but little is known about its molecular mechanism responding to grazing and BSA deposition. Because it has a large genome, RNA sequencing is expensive and impractical except for the next-generation sequencing (NGS) technology. RESULTS: In this study, NGS technology was employed to characterize de novo the transcriptome of sheepgrass after defoliation and grazing treatments and to identify differentially expressed genes (DEGs) responding to grazing and BSA deposition. We assembled more than 47 M high-quality reads into 120,426 contigs from seven sequenced libraries. Based on the assembled transcriptome, we detected 2,002 DEGs responding to BSA deposition during grazing. Enrichment analysis of Gene ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that the effects of grazing and BSA deposition involved more apoptosis and cell oxidative changes compared to defoliation. Analysis of DNA fragments, cell oxidative factors and the lengths of leaf scars after grazing provided physiological and morphological evidence that BSA deposition during grazing alters the oxidative and apoptotic status of cells. CONCLUSIONS: This research greatly enriches sheepgrass transcriptome resources and grazing-stress-related genes, helping us to better understand the molecular mechanism of grazing in sheepgrass. The grazing-stress-related genes and pathways will be a valuable resource for further gene-phenotype studies.


Asunto(s)
Herbivoria , Poaceae/efectos de los fármacos , Poaceae/genética , Saliva/química , Análisis de Secuencia de ARN , Albúmina Sérica Bovina/farmacología , Animales , Bovinos , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Poaceae/citología , Poaceae/metabolismo
2.
Mol Plant ; 12(5): 661-677, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30822525

RESUMEN

Paper mulberry (Broussonetia papyrifera) is a well-known woody tree historically used for Cai Lun papermaking, one of the four great inventions of ancient China. More recently, Paper mulberry has also been used as forage to address the shortage of feedstuff because of its digestible crude fiber and high protein contents. In this study, we obtained a chromosome-scale genome assembly for Paper mulberry using integrated approaches, including Illumina and PacBio sequencing platform as well as Hi-C, optical, and genetic maps. The assembled Paper mulberry genome consists of 386.83 Mb, which is close to the estimated size, and 99.25% (383.93 Mb) of the assembly was assigned to 13 pseudochromosomes. Comparative genomic analysis revealed the expansion and contraction in the flavonoid and lignin biosynthetic gene families, respectively, accounting for the enhanced flavonoid and decreased lignin biosynthesis in Paper mulberry. Moreover, the increased ratio of syringyl-lignin to guaiacyl-lignin in Paper mulberry underscores its suitability for use in medicine, forage, papermaking, and barkcloth making. We also identified the root-associated microbiota of Paper mulberry and found that Pseudomonas and Rhizobia were enriched in its roots and may provide the source of nitrogen for its stems and leaves via symbiotic nitrogen fixation. Collectively, these results suggest that Paper mulberry might have undergone adaptive evolution and recruited nitrogen-fixing microbes to promote growth by enhancing flavonoid production and altering lignin monomer composition. Our study provides significant insights into genetic basis of the usefulness of Paper mulberry in papermaking and barkcloth making, and as forage. These insights will facilitate further domestication and selection as well as industrial utilization of Paper mulberry worldwide.


Asunto(s)
Broussonetia/genética , Cromosomas de las Plantas/genética , Genómica , Papel , Broussonetia/metabolismo , Broussonetia/microbiología , Celulosa/biosíntesis , Evolución Molecular , Flavonoides/biosíntesis , Genoma de Planta/genética , Lignina/biosíntesis , Anotación de Secuencia Molecular , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA