Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Angew Chem Int Ed Engl ; 56(4): 966-971, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-27918129

RESUMEN

The use of biomacromolecular therapeutics has revolutionized disease treatment, but frequent injections are required owing to their short half-life in vivo. Thus there is a need for a drug delivery system that acts as a reservoir and releases the drug remotely "on demand". Here we demonstrate a simple light-triggered local drug delivery system through photo-thermal interactions of polymer-coated gold nanoparticles (AuNPs) inside an agarose hydrogel as therapeutic depot. Localized temperature increase induced by the visible light exposure caused reversible softening of the hydrogel matrix to release the pre-loaded therapeutics. The release profile can be adjusted by AuNPs and agarose concentrations, light intensity and exposure time. Importantly, the biological activity of the released bevacizumab was highly retained. In this study we demonstrate the potential application of this facile AuNPs/hydrogel system for ocular therapeutics delivery through its versatility to release multiple biologics, compatibility to ocular cells and spatiotemporal control using visible light.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Luz , Fotoquimioterapia , Proteínas/química , Oro/química , Humanos , Nanopartículas del Metal/química , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
2.
Microb Cell Fact ; 11: 146, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23126526

RESUMEN

BACKGROUND: Collagen has proved valuable as biomedical materials for a range of clinical applications, particularly in wound healing. It is normally produced from animal sources, such as from bovines, but concerns have emerged over transmission of diseases. Recombinant collagens would be preferable, but are difficult to produce. Recently, studies have shown that 'collagens' from bacteria, including Streptococcus pyogenes, can be produced in the laboratory as recombinant products, and that these are biocompatible. In the present study we have established that examples of bacterial collagens can be produced in a bioreactor with high yields providing proof of manufacture of this important group of proteins. RESULTS: Production trials in shake flask cultures gave low yields of recombinant product, < 1 g/L. Increased yields, of around 1 g/L, were obtained when the shake flask process was transferred to a stirred tank bioreactor, and the yield was further enhanced to around 10 g/L by implementation of a high cell density fed-batch process and the use of suitably formulated fully defined media. Similar yields were obtained with 2 different constructs, one containing an introduced heparin binding domain. The best yields, of up to 19 g/L were obtained using this high cell density strategy, with an extended 24 h production time. CONCLUSIONS: These data have shown that recombinant bacterial collagen from S. pyogenes, can be produced in sufficient yield by a scalable microbial production process to give commercially acceptable yields for broad use in biomedical applications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Colágeno/metabolismo , Streptococcus pyogenes/metabolismo , Proteínas Bacterianas/genética , Materiales Biocompatibles/metabolismo , Reactores Biológicos/microbiología , Colágeno/genética , Medios de Cultivo/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Temperatura
3.
J Mater Sci Mater Med ; 20 Suppl 1: S3-8, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18379858

RESUMEN

This paper reviews the structure, function and applications of collagens as biomaterials. The various formats for collagens, either as tissue-based devices or as reconstituted soluble collagens are discussed. The major emphasis is on the new technologies that are emerging that will lead to new and improved collagen-based medical devices. In particular, the development of recombinant collagens, especially using microorganism systems, is allowing the development of safe and reproducible collagen products. These systems also allow for the development of novel, non-natural structures, for example collagen like structures containing repeats of key functional domains or as chimeric structures where a collagen domain is covalently linked to another biologically active component.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Colágeno/uso terapéutico , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/uso terapéutico , Colágeno/química , Colágeno/genética , Variación Genética/fisiología , Humanos , Proteínas Recombinantes/uso terapéutico , Ingeniería de Tejidos/tendencias
4.
Bone ; 127: 324-333, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31260814

RESUMEN

Mineralization of bone is a dynamic process, involving a complex interplay between cells, secreted macromolecules, signaling pathways, and enzymatic reactions; the dysregulation of bone mineralization may lead to serious skeletal disorders, including hypophosphatemic rickets, osteoporosis, and rheumatoid arthritis. Very few studies have reported the role of osteocytes - the most abundant bone cells in the skeletal system and the major orchestrators of bone remodeling in bone mineralization, which is owed to their nature of being deeply embedded in the mineralized bone matrix. The Wnt/ß-catenin signaling pathway is actively involved in various life processes including osteogenesis; however, the role of Wnt/ß-catenin signaling in the terminal mineralization of bone, especially in the regulation of osteocytes, is largely unknown. This research demonstrates that during the terminal mineralization process, the Wnt/ß-catenin pathway is downregulated, and when Wnt/ß-catenin signaling is activated in osteocytes, dendrite development is suppressed and the expression of dentin matrix protein 1 (DMP1) is inhibited. Aberrant activation of Wnt/ß-catenin signaling in osteocytes leads to the spontaneous deposition of extra-large mineralized nodules on the surface of collagen fibrils. The altered mineral crystal structure and decreased bonding force between minerals and the organic matrix indicate the inferior integration of minerals and collagen. In conclusion, Wnt/ß-catenin signaling plays a critical role in the terminal differentiation of osteocytes and as such, targeting Wnt/ß-catenin signaling in osteocytes may serve as a potential therapeutic approach for the management of bone-related diseases.


Asunto(s)
Calcificación Fisiológica , Osteocitos/metabolismo , Vía de Señalización Wnt , Animales , Biomarcadores/metabolismo , Línea Celular , Cristalización , Ratones Endogámicos C57BL , Osteocitos/ultraestructura , Porcinos
5.
Acta Biomater ; 51: 75-88, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28087486

RESUMEN

Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides. The cross-linkers were further functionalized with a tethered RGDS peptide creating a system whereby the release from an MMP7-cleavable hydrogel could be compared to a system where release is not possible. The release of the RGDS peptide from the degradable hydrogels led to significantly enhanced expression of collagen type II (3.9-fold increase), aggrecan (7.6-fold increase), and SOX9 (5.2-fold increase) by human mesenchymal stem cells (hMSCs) undergoing chondrogenesis, as well as greater extracellular matrix accumulation compared to non-degradable hydrogels (collagen type II; 3.2-fold increase, aggrecan; 4-fold increase, SOX9; 2.8-fold increase). Hydrogels containing a low concentration of the RGDS peptide displayed significantly decreased collagen type I and X gene expression profiles, suggesting a major advantage over either hydrogels functionalized with a higher RGDS peptide concentration, or non-degradable hydrogels, in promoting an articular cartilage phenotype. These highly versatile Scl2 hydrogels can be further manipulated to improve specific elements of the chondrogenic response by hMSCs, through the introduction of additional bioactive and/or biodegradable motifs. As such, these hydrogels have the possibility to be used for other applications in tissue engineering. STATEMENT OF SIGNIFICANCE: Recapitulating aspects of the native tissue biochemical microenvironment faces significant challenges in regenerative medicine and tissue engineering due to the complex and dynamic nature of the tissue. The ability to take advantage of, mimic, and modulate cell-mediated processes within novel naturally-derived hydrogels is of great interest in the field of biomaterials to generate constructs that more closely resemble the biochemical microenvironment and functions of native biological tissues such as articular cartilage. Towards this goal, the temporal presentation of bioactive sequences such as RGDS on the chondrogenic differentiation of human mesenchymal stem cells is considered important as it has been shown to influence the chondrogenic phenotype. Here, a novel and versatile platform to recreate a high degree of biological complexity is proposed, which could also be applicable to other tissue engineering and regenerative medicine applications.


Asunto(s)
Materiales Biomiméticos/farmacología , Cartílago Articular/citología , Colágeno/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Metaloproteinasa 7 de la Matriz/metabolismo , Células Madre Mesenquimatosas/citología , Oligopéptidos/farmacología , Proteínas Bacterianas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis/efectos de los fármacos , Colágeno/metabolismo , Fuerza Compresiva , ADN/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Humanos , Cinética , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo
6.
Biomaterials ; 99: 56-71, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27214650

RESUMEN

Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined biological 'blank template' that can be modified to incorporate bioactive and biodegradable peptide sequences within a precisely defined three-dimensional system. We customized the backbone of a Streptococcal collagen-like 2 (Scl2) protein with heparin-binding, integrin-binding, and hyaluronic acid-binding peptide sequences previously shown to modulate chondrogenesis and then cross-linked the recombinant Scl2 protein with a combination of matrix metalloproteinase 7 (MMP7)- and aggrecanase (ADAMTS4)-cleavable peptides at varying ratios to form biodegradable hydrogels with degradation characteristics matching the temporal expression pattern of these enzymes in human mesenchymal stem cells (hMSCs) during chondrogenesis. hMSCs encapsulated within the hydrogels cross-linked with both degradable peptides exhibited enhanced chondrogenic characteristics as demonstrated by gene expression and extracellular matrix deposition compared to the hydrogels cross-linked with a single peptide. Additionally, these combined peptide hydrogels displayed increased MMP7 and ADAMTS4 activities and yet increased compression moduli after 6 weeks, suggesting a positive correlation between the degradation of the hydrogels and the accumulation of matrix by hMSCs undergoing chondrogenesis. Our results suggest that including dual degradation motifs designed to respond to enzymatic activity of hMSCs going through chondrogenic differentiation led to improvements in chondrogenesis. Our hydrogel system demonstrates a bimodal enzymatically degradable biological platform that can mimic native cellular processes in a temporal manner. As such, this novel collagen-mimetic protein, cross-linked via multiple enzymatically degradable peptides, provides a highly adaptable and well defined platform to recapitulate a high degree of biological complexity, which could be applicable to numerous tissue engineering and regenerative medicine applications.


Asunto(s)
Proteínas Bacterianas/química , Materiales Biomiméticos/química , Condrogénesis , Colágeno/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Células Madre Mesenquimatosas/citología , Proteína ADAMTS4/química , Proteínas Bacterianas/genética , Materiales Biomiméticos/metabolismo , Cartílago Articular/citología , Diferenciación Celular , Células Cultivadas , Colágeno/genética , Colágeno/metabolismo , Reactivos de Enlaces Cruzados/química , Endopeptidasas/química , Matriz Extracelular/ultraestructura , Humanos , Metaloproteinasa 7 de la Matriz/química , Péptidos/química , Proteolisis , Streptococcus , Ingeniería de Tejidos/métodos
7.
J Biomed Mater Res A ; 93(4): 1235-44, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19777573

RESUMEN

There have been concerns regarding the suitability of bovine collagen as a biomaterial since the emergence of bovine spongiform encephalopathy. Consequently, collagens from other species may be used if they can meet appropriate standards, including negligible or lack of immunogenicity. In this study, the potential immunogenicity of both monomeric and pepsin-solubilized chicken collagens have been compared with a commercial, pepsin-solubilized bovine collagen that is approved for biomedical implantation. All collagens were poor immunogens compared with ovalbumin. No IgE responses were detected in sera of three strains of mice, and no hypersensitivity reactions were found in guinea pigs in maximization and Buehler tests. IgG(1) antibodies were found although the titre was substantially lower than against ovalbumin. All responses in mice and rabbits were found only when immunizations were performed with adjuvant, and after multiple injections over a long period of time. The response from the monomeric chicken collagen was less than for pepsin-solubilized collagens. Collagen sponges prepared from the two chicken collagen preparations both supported the attachment and growth of mouse fibroblasts. These data indicate that chicken collagen, particularly when monomeric, may be useful in certain biomedical applications.


Asunto(s)
Materiales Biocompatibles/química , Colágeno/química , Animales , Bovinos , Adhesión Celular , Pollos , Femenino , Cobayas , Inmunoglobulina E/química , Masculino , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/química , Conejos , Piel/patología
8.
Biomaterials ; 31(10): 2755-61, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20056274

RESUMEN

A range of bacteria have been shown to contain collagen-like sequences that form triple-helical structures. Some of these proteins have been shown to form triple-helical motifs that are stable around body temperature without the inclusion of hydroxyproline or other secondary modifications to the protein sequence. This makes these collagen-like proteins particularly suitable for recombinant production as only a single gene product and no additional enzyme needs to be expressed. In the present study, we have examined the cytotoxicity and immunogenicity of the collagen-like domain from Streptococcus pyogenes Scl2 protein. These data show that the purified, recombinant collagen-like protein is not cytotoxic to fibroblasts and does not elicit an immune response in SJL/J and Arc mice. The freeze dried protein can be stabilised by glutaraldehyde cross-linking giving a material that is stable at >37 degrees C and which supports cell attachment while not causing loss of viability. These data suggest that bacterial collagen-like proteins, which can be modified to include specific functional domains, could be a useful material for medical applications and as a scaffold for tissue engineering.


Asunto(s)
Proteínas Bacterianas/farmacología , Materiales Biocompatibles/farmacología , Colágeno/farmacología , Reactivos de Enlaces Cruzados/farmacología , Streptococcus pyogenes/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/aislamiento & purificación , Adhesión Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno/química , Colágeno/inmunología , Colágeno/aislamiento & purificación , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Glutaral/farmacología , Inmunización , Ratones , Estabilidad Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Solubilidad/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA