Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Pharmacol Exp Ther ; 363(3): 348-357, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28904003

RESUMEN

This article describes the preclinical pharmacology and pharmacokinetics (PK) of hexadecyl-treprostinil (C16TR), a prodrug of treprostinil (TRE), formulated in a lipid nanoparticle (LNP) for inhalation as a pulmonary vasodilator. C16TR showed no activity (>10 µM) in receptor binding and enzyme inhibition assays, including binding to prostaglandin E2 receptor 2, prostaglandin D2 receptor 1, prostaglandin I2 receptor, and prostaglandin E2 receptor 4; TRE potently bound to each of these prostanoid receptors. C16TR had no effect (up to 200 nM) on platelet aggregation induced by ADP in rat blood. In hypoxia-challenged rats, inhaled C16TR-LNP produced dose-dependent (0.06-6 µg/kg), sustained pulmonary vasodilation over 3 hours; inhaled TRE (6 µg/kg) was active at earlier times but lost its effect by 3 hours. Single- and multiple-dose PK studies of inhaled C16TR-LNP in rats showed proportionate dose-dependent increases in TRE Cmax and area under the curve (AUC) for both plasma and lung; similar results were observed for dog plasma levels in single-dose PK studies. In both species, inhaled C16TR-LNP yielded prolonged plasma TRE levels and a lower plasma TRE Cmax compared with inhaled TRE. Inhaled C16TR-LNP was well tolerated in rats and dogs; TRE-related side effects included cough, respiratory tract irritation, and emesis and were seen only after high inhaled doses of C16TR-LNP in dogs. In guinea pigs, inhaled TRE (30 µg/ml) consistently produced cough, but C16TR-LNP (30 µg/ml) elicited no effect. These results demonstrate that C16TR-LNP provides long-acting pulmonary vasodilation, is well tolerated in animal studies, and may necessitate less frequent dosing than inhaled TRE with possibly fewer side effects.


Asunto(s)
Antihipertensivos/uso terapéutico , Sistemas de Liberación de Medicamentos , Epoprostenol/análogos & derivados , Hipertensión Pulmonar/tratamiento farmacológico , Profármacos/administración & dosificación , Vasodilatadores/administración & dosificación , Administración por Inhalación , Animales , Antihipertensivos/administración & dosificación , Antihipertensivos/farmacocinética , Antihipertensivos/farmacología , Perros , Relación Dosis-Respuesta a Droga , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/efectos adversos , Evaluación Preclínica de Medicamentos , Epoprostenol/administración & dosificación , Epoprostenol/metabolismo , Epoprostenol/farmacocinética , Epoprostenol/farmacología , Epoprostenol/uso terapéutico , Excipientes/administración & dosificación , Excipientes/efectos adversos , Excipientes/química , Femenino , Cobayas , Humanos , Hipertensión Pulmonar/sangre , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Nanopartículas/administración & dosificación , Nanopartículas/efectos adversos , Nanopartículas/química , Fosfatidiletanolaminas/administración & dosificación , Fosfatidiletanolaminas/efectos adversos , Fosfatidiletanolaminas/química , Agregación Plaquetaria/efectos de los fármacos , Polietilenglicoles/administración & dosificación , Polietilenglicoles/efectos adversos , Polietilenglicoles/química , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/uso terapéutico , Ratas Sprague-Dawley , Escualeno/administración & dosificación , Escualeno/efectos adversos , Escualeno/análogos & derivados , Escualeno/química , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacocinética , Vasodilatadores/farmacología , Vasodilatadores/uso terapéutico
2.
Antimicrob Agents Chemother ; 60(11): 6540-6549, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27550345

RESUMEN

Pulmonary nontuberculous mycobacterial (PNTM) infections represent a treatment challenge. Liposomal amikacin for inhalation (LAI) is a novel formulation currently in development for the treatment of PNTM infections. The pulmonary deposition and elimination of LAI and its effect on macrophage function were evaluated in a series of preclinical studies in healthy rats. The pulmonary deposition of LAI was evaluated in female rats (n = 76) treated with LAI by nebulizer at 10 mg/kg of body weight per day or 90 mg/kg per day for 27 days, followed by dosing of dually labeled LAI (LAI with a lipid label plus an amikacin label) on day 28 with subsequent lung histological and amikacin analyses. In a separate study for assessment of alveolar macrophage function, rats (n = 180) received daily treatment with LAI at 90 mg/kg per day or 1.5% saline over three 30-day treatment periods followed by 30-day recovery periods; phagocytic and Saccharomyces cerevisiae (yeast) killing capabilities and inflammatory mediator release were assessed at the end of each period. LAI demonstrated equal dose-dependent deposition across all lung lobes and regions. Lipid and amikacin labels showed diffuse extracellular colocalization, followed by macrophage uptake and gradual amikacin elimination. Macrophages demonstrated accumulation of amikacin during treatment periods and nearly complete elimination during recovery periods. No evidence of an inflammatory response was seen. No differences in microsphere uptake or yeast killing were seen between LAI-treated and control macrophages. Neither LAI-treated nor control macrophages demonstrated constitutive inflammatory mediator release; however, both showed normal mediator release on lipopolysaccharide stimulation. LAI is readily taken up by macrophages in healthy rats without compromising macrophage function.


Asunto(s)
Amicacina/farmacocinética , Antibacterianos/farmacocinética , Liposomas/administración & dosificación , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Administración por Inhalación , Animales , Esquema de Medicación , Evaluación Preclínica de Medicamentos , Femenino , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos Alveolares/citología , Macrófagos Alveolares/inmunología , Nebulizadores y Vaporizadores , Fagocitosis/efectos de los fármacos , Ratas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
3.
J Liposome Res ; 23(4): 336-42, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23879241

RESUMEN

The radiolabeling of the liposome surface can be a useful tool for in vivo tracking of therapeutic drug loaded liposomes. We investigated radiolabeling therapeutic drug (i.e. an antibiotic, amikacin) loaded liposomes with (99m)Tc, nebulization properties of (99m)Tc-labeled liposomal amikacin for inhalation ((99m)Tc-LAI), and its stability by size exclusion low-pressure liquid chromatography (LPLC). LAI was reacted with (99m)Tc using SnCl2 dissolved in ascorbic acid as a reducing agent for 10 min at room temperature. The labeled products were then purified by anion exchange resin. The purified (99m)Tc-LAI in 1.5% NaCl solution was incubated at 4 °C to assess its stability by LPLC. The purified (99m)Tc-LAI was subjected to studies with a clinically used nebulizer (PARI eFlow®) and the Anderson Cascade Impactor (ACI). The use of ascorbic acid at 0.91 mM resulted in a quantitative labeling efficiency. The LPLC profile showed that the liposomal peak of LAI detected by a UV monitor at both 200 nm and 254 nm overlapped with the radioactivity peak of (99m)Tc-LAI, indicating that (99m)Tc-LAI is suitable for tracing LAI. The ACI study demonstrated that the aerosol droplet size distribution determined gravimetrically was similar to that determined by radioactivity. The liposome surface labeling method using SnCl2 in 0.91 mM ascorbic acid produced (99m)Tc-LAI with a high labeling efficiency and stability that are adequate to evaluate the deposition and clearance of inhaled LAI in the lung by gamma scintigraphy.


Asunto(s)
Amicacina/administración & dosificación , Antibacterianos/administración & dosificación , Liposomas , Compuestos de Organotecnecio/química , Administración por Inhalación , Amicacina/química , Antibacterianos/química , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Tamaño de la Partícula , Espectrofotometría Ultravioleta
4.
Eur J Pharm Biopharm ; 166: 10-18, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34082122

RESUMEN

The purpose of these studies was to understand the effect on product performance of batch-to-batch variability in both the amikacin liposome inhalation suspension (ALIS) formulation and its delivery device, the Lamira® nebulizer system, designed and manufactured by PARI (PARI Pharma GmbH, Munich, Germany). Three batches of ALIS spanning a range of lipid concentrations (43, 48 and 54 mg/mL) were tested with nine PARI inhalation devices that varied within the production process of the vibrating membrane with respect to hole geometry. Three hole geometry clusters were built including a geometry close to the mean geometry (median) and two geometries deviating from the mean geometry with smaller (smaller) and larger (larger) holes. The output parameters included the nebulization rate, the aerosol droplet size distribution, the liposome vesicle size post-nebulization, and the fraction of amikacin that remained encapsulated post-nebulization. Across the 27 experimental combinations of three formulation batches and nine devices, the nebulization time varied between 12 and 15 min with the fastest nebulization rate occurring with the combination of low lipid concentration and larger hole geometry (0.68 g/min) and the slowest nebulization rate occurring with the combination of high lipid concentration and the smaller hole geometry (0.59 g/min). The mean liposome vesicle size post-nebulization ranged from 269 to 296 nm across all experimental combinations which was unchanged from the control samples (276-292 nm). While all three batches contained > 99% encapsulated amikacin prior to nebulization, the nebulization process resulted in a consistent generation of ~ 35% unencapsulated amikacin (range: 33.8% to 37.6%). There was no statistically significant difference in the generated aerosol particle size distributions. The mass median aerodynamic diameters (MMAD) ranged from 4.78 µm to 4.98 µm, the geometric standard deviations (GSD) ranged from 1.61 to 1.66, and the aerosol fine particle fraction (FPF < 5 µm) ranged from 50.3 to 53.5%. The emitted dose (ED) of amikacin ranged from 473 to 523 mg (80.2 to 89.3% of loaded dose (LD)) and the fine particle dose (FPD < 5 µm) ranged from 244 to 278 mg (41.4 to 47.1% of label claim (LC)). In conclusion, while variations in the lipid concentration of the ALIS formulation and the device hole geometry had a small but significant impact on nebulization time, the critical aerosol performance parameters were maintained and remained within acceptable limits.


Asunto(s)
Amicacina , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos , Nebulizadores y Vaporizadores , Administración por Inhalación , Partículas y Gotitas de Aerosol/química , Partículas y Gotitas de Aerosol/farmacología , Aerosoles/administración & dosificación , Aerosoles/farmacología , Amicacina/administración & dosificación , Amicacina/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Diseño de Equipo , Lípidos/química , Liposomas
5.
Biochim Biophys Acta ; 1668(1): 117-25, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-15670737

RESUMEN

Phospholipid-ethanol-aqueous mixtures containing bilayer-forming lipids and 20-50 wt.% of water form viscous gels. Further hydration of these gels results in the formation of liposomes whose morphology depends upon the lipid type. Upon hydration of gels containing mixtures of the lipids 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), small homogeneous and unilamellar liposomes were produced. In contrast, hydration of gels containing only POPC resulted in formation of large multilamellar liposomes. Likewise, mulitlamellar liposomes resulted when this method was applied to form highly fusogenic liposomes comprised of the novel negatively charged N-acyl-phosphatidylethanolamine (NAPE) mixed with di-oleoyl-phosphatidylcholine (DOPC) (7:3) [T. Shangguan, C.C. Pak, S. Ali, A.S. Janoff, P. Meers, Cation-dependent fusogenicity of an N-acyl phosphatidylethanolamine, Biochim. Biophys. Acta 1368 (1998) 171-183]. In all cases, the measured aqueous entrapment efficiencies were relatively high. To better understand how the molecular organization of these various gels affects liposome morphology, we examined samples by freeze-fracture transmission electron microscopy and X-ray diffraction. We found that phospholipid-ethanol-water gels are comprised of highly organized stacks of lamellae. A distinct feature of the gel samples that result in small unilamellar liposomes is the combination of acyl chain interdigitation and net electrostatic charge. We speculate that the mechanism of unilamellar liposome formation proceeds via formation of stalk contacts between neighboring layers similar to membrane hemifusion intermediates, and the high aqueous entrapment efficiencies make this liposome formation process attractive for use in drug delivery applications.


Asunto(s)
Liposomas/química , Etanol/química , Geles/química , Lípidos/química , Microscopía Electrónica de Transmisión , Temperatura , Agua/química , Difracción de Rayos X
6.
J Aerosol Med ; 19(3): 385-91, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17034313

RESUMEN

The aim of this study was to determine the efficacy of using a high-efficiency particulate air (HEPA) filter air cleaning system, a demistifier, to reduce the potential risk of fugitive aerosol contact in health care personnel working with patients inhaling nebulized liposomal encapsulated SLIT (Sustained-release Lipid Inhalation Targeting) Cisplatin. Filters were used to sample platinum in the air outside the tent and from the tent's exhaust stream. Air collection was performed under three conditions: (1) during patient dosing (14 h of air collection); (2) immediately after the patient has left the demistifier tent (4 h of air collection); and (3) when 7 mL of drug product was nebulized to dryness in the tent without a patient being present. Filters were collected, and placed in an extraction solvent. Subsequently, the solvent was assayed for platinum content by inductively coupled plasma-mass spectrometry (ICP-MS). Platinum levels in the extraction solvent were indistinguishable from the blank controls for all conditions. Measured levels were below workplace exposure limits established for cisplatin by the Occupational Safety and Health Administration (i.e., 2 ng . (L(1)). In addition, the demistifier was able to effectively capture aerosolized SLIT Cisplatin following nebulization of 7 mL of drug product to dryness in the tent. The demistifier tent is effective at containing any nebulized liposomal encapsulated cisplatin during patient treatment. Importantly, because the tent's HEPA filtration system is effective at removing any nebulized liposomal cisplatin, the exhausted air, which is free of platinum, can be returned into the room with no additional ventilation precautions.


Asunto(s)
Contaminación del Aire Interior/prevención & control , Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Liposomas/química , Nebulizadores y Vaporizadores , Ventilación , Aerosoles , Vías de Administración de Medicamentos , Estudios de Evaluación como Asunto , Filtración/métodos , Inhalación , Espectrometría de Masas/métodos , Tamaño de la Partícula , Estados Unidos , United States Occupational Safety and Health Administration , Lugar de Trabajo
7.
Methods Enzymol ; 367: 80-98, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14611060

RESUMEN

IF-liposomes are formed by a unique process that involves fusing small liposomes into interdigitated lipid sheets, using either ethanol or hydrostatic pressure. The interdigitation-fusion method requires liposome formulations with lipids that form the L beta I phase. Preparing ethanol-induced IF-liposomes is simple and quick. IF-liposomes are particularly well suited for biomembrane research experiments that require large unilamellar liposomes and for liposome drug delivery applications that require a high drug-to-lipid ratio.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Liposomas/química , Colorantes Fluorescentes , Técnica de Fractura por Congelación , Indicadores y Reactivos , Fusión de Membrana , Microscopía Electrónica , Tamaño de la Partícula , Difracción de Rayos X/métodos
8.
J Aerosol Med Pulm Drug Deliv ; 22(2): 131-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19422313

RESUMEN

BACKGROUND: The purpose of this study was to investigate the inhalation of a liposomal formulation of amikacin in healthy male volunteers in terms of pulmonary deposition, clearance, and safety following nebulization with a commercial jet nebulizer. METHODS: Amikacin was encapsulated in liposomes comprised of dipalmitoyl phosphatidylcholine (DPPC) and cholesterol via a proprietary manufacturing process (20 mg/mL final amikacin concentration). The liposomes were radiolabeled with (99m)Tc using the tin chloride labeling method. A nominal dose of 120 mg of drug product was loaded into a PARI LC STAR nebulizer, aerosolized using a PARI Boy compressor where subjects inhaled for 20 min. Lung deposition was determined by gamma scintigraphy in three healthy male volunteers at the following time points (0, 1, 3, 6, 12, 24, 48, and 72 h post-administration). RESULTS: Total lung deposition, expressed as a percentage of the emitted dose, was 32.3 +/- 3.4%. The time-dependent retention of radiolabeled liposomes was biphasic with an initial rapid reduction in counts, followed by a slower phase to 48 h. The overall mean retention at 24 and 48 h was 60.4 and 38.3% of the initial dose deposited, respectively. The observed clearance of radiolabel is consistent with clearance of amikacin following aerosol delivery to rats. There were no clinically significant changes in laboratory parameters, vital signs, or ECG. No adverse events including cough or bronchospasm were reported. CONCLUSIONS: Inhalation of a single nominal dose of 120 mg liposomal amikacin results in prolonged retention of drug-loaded liposomes in the lungs of healthy volunteers. The treatment was well tolerated.


Asunto(s)
Amicacina/administración & dosificación , Amicacina/farmacocinética , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Administración por Inhalación , Aerosoles , Amicacina/efectos adversos , Antibacterianos/efectos adversos , Química Farmacéutica , Volumen Espiratorio Forzado , Humanos , Liposomas , Masculino , Tasa de Depuración Metabólica , Nebulizadores y Vaporizadores , Cintigrafía , Radiofármacos , Valores de Referencia , Reproducibilidad de los Resultados , Pertecnetato de Sodio Tc 99m , Capacidad Vital
9.
J Aerosol Med Pulm Drug Deliv ; 21(3): 245-54, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18759656

RESUMEN

The stress of nebulization has been shown to alter the properties of liposomal drugs. What has not been demonstrated is whether nebulized liposomes differ as a function of droplet size. Because droplet size influences lung deposition, liposomes with different properties could be deposited in different areas of the lung (e.g., central vs. peripheral). In this report, a liposomal amikacin formulation (Arikace, a registered trademark of Transave, Inc., Monmouth Junction, NJ) that is being developed as an inhaled treatment for gram negative infections was aerosolized with an eFlow (registered trademark of PARI, GmbH, Munich, Germany) nebulizer, reclaimed from the various stages of an Andersen cascade impactor (ACI) and analyzed for lipid-to-drug (L/D) (w/w) ratio, amikacin retention, and liposome size. For the nebulized solution, 99.7% of the total deposited drug was found on ACI stages 0 through 5, which have cutoff diameters of 9, 5.8, 4.7, 3.3, 2.1, and 1.1 microm, respectively. Properties were found to differ for drug reclaimed on stage 0 compared stages 1-5, which were not different from one another. For drug found on stages 1-5 (97% of total drug), the averages (n = 3) for L/D, percent encapsulated amikacin, and liposome mean diameter ranged from 0.59 to 0.68 (w/w), 71% to 75%, 248 to 282 nm, respectively. Drug found on stage 0 (2.8% of total drug) had an average L/D ratio of 0.51 and average liposome mean diameter of 375 nm. Examination of another batch of liposomal amikacin revealed no statistically significant differences between drug reclaimed on stages 0-5. Although a droplet size dependence was noted for one batch of Arikace aerosolized with the eFlow, the effect was considered to be inconsequential because the fraction in doubt represented nonrespirable particles >9 microm and accounted for <3% of the total deposited dose. The methodology applied here appears useful in evaluating aerosolized liposome systems. However, our results should not be assumed to apply to other liposome/drug compositions and nebulizers.


Asunto(s)
Amicacina/administración & dosificación , Antibacterianos/administración & dosificación , Aerosoles , Amicacina/química , Antibacterianos/química , Cromatografía Líquida de Alta Presión , Diseño de Equipo , Liposomas , Nebulizadores y Vaporizadores , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA