Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biomacromolecules ; 22(10): 4274-4283, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34541856

RESUMEN

The nano- to microscale structures at the interface between materials can define the macroscopic material properties. These structures are extremely difficult to investigate for complex material systems, such as cellulose-rich materials. The development of new model cellulose materials and measuring techniques has opened new possibilities to resolve this problem. We present a straightforward approach combining micro-focusing grazing-incidence small-angle X-ray scattering and atomic force microscopy (AFM) to investigate the structural rearrangements of cellulose/cellulose interfaces in situ during drying. Based on the results, we propose that molecular interdiffusion and structural rearrangement play a major role in the development of the properties of the cellulose/cellulose interphase; this model is representative of the development of the properties of joint/contact points between macroscopic cellulose fibers.


Asunto(s)
Celulosa , Incidencia , Interfase , Difracción de Rayos X , Rayos X
2.
Langmuir ; 33(4): 968-979, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28045539

RESUMEN

To clarify the importance of the surface charge for the formation of polyelectrolyte multilayers, layer-by-layer (LbL) assemblies of polydiallyldimethylammonium chloride (pDADMAC) and polystyrenesulfonate (PSS) have been investigated on cellulose films with different carboxylic acid contents (20, 350, 870, and 1200 µmol/g) regenerated from oxidized cellulose. The wet cellulose films were thoroughly characterized prior to multilayer deposition using quantitative nanomechanical mapping (QNM), which showed that the mechanical properties were greatly affected by the degree of oxidation of the cellulose. Atomic force microscopy (AFM) force measurements were used to determine the surface potential of the cellulose films by fitting the force data to the DLVO theory. With the exception of the 1200 µmol/g film, the force measurements showed a second-order polynomial increase in surface potential with increasing degree of oxidation. The low surface potential for the 1200 µmol/g film was attributed to the low degree of regeneration of the cellulose film in aqueous media due to increasing solubility with increasing charge. The multilayer formation was characterized using a quartz crystal microbalance with dissipation (QCM-D) and stagnation-point adsorption reflectometry (SPAR). Extensive deswelling was observed for the charged films when pDADMAC was adsorbed due to the reduced osmotic pressure when ions inside the film were released, and the 1:1 charge compensation showed that all the charges in the films were reached by the pDADMAC. The multilayer formation was not significantly affected by the charge density above 350 µmol/g due to interlayer repulsions, but it was strongly affected by the salt concentration during the layer build-up.


Asunto(s)
Celulosa/química , Polielectrolitos/química , Oxidación-Reducción , Polietilenos/química , Compuestos de Amonio Cuaternario/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
3.
Biomacromolecules ; 15(12): 4420-8, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25333327

RESUMEN

Model layer-by-layer (LbL) assemblies of poly(allylamine hydrochloride) (PAH) and hyaluronic acid (HA) were fabricated in order to study their wet adhesive behavior. The film characteristics were investigated to understand the inherent structures during the assembly process. Subsequently, the adhesion of these systems was evaluated to understand the correlation between the structure of the film and the energy required to separate these LbL assemblies. We describe how the conditions of the LbL fabrication can be utilized to control the adhesion between films. The characteristics of the film formation are examined in the absence and presence of salt during the film formation. The dependence on contact time and LbL film thickness on the critical pull-off force and work of adhesion are discussed. Specifically, by introducing sodium chloride (NaCl) in the assembly process, the pull-off forces can be increased by a factor of 10 and the work of adhesion by 2 orders of magnitude. Adjusting both the contact time and the film thickness enables control of the adhesive properties within these limits. Based on these results, we discuss how the fabrication procedure can create tailored adhesive interfaces with properties surpassing analogous systems found in nature.


Asunto(s)
Biopolímeros/química , Adhesividad , Ácido Hialurónico/química , Microscopía de Fuerza Atómica , Poliaminas/química , Propiedades de Superficie
4.
Biomacromolecules ; 13(10): 3046-53, 2012 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-22924973

RESUMEN

For the first time the dry adhesion was measured for an all-wood biopolymer system using Johnson-Kendall-Roberts (JKR) contact mechanics. The polydimethylsiloxane hemisphere was successfully surface-modified with a Cellulose I model surface using layer-by-layer assembly of nanofibrillated cellulose and polyethyleneimine. Flat surfaces of cellulose were equally prepared on silicon dioxide substrates, and model surfaces of glucomannan and lignin were prepared on silicon dioxide using spin-coating. The measured work of adhesion on loading and the adhesion hysteresis was found to be very similar between cellulose and all three wood polymers, suggesting that the interaction between these biopolymers do not differ greatly. Surface energy calculations from contact angle measurements indicated similar dispersive surface energy components for the model surfaces. The dispersive component was dominating the surface energy for all surfaces. The JKR work of adhesion was lower than that calculated from contact angle measurements, which partially can be ascribed to surface roughness of the model surfaces and overestimation of the surface energies from contact angle determinations.


Asunto(s)
Biopolímeros/química , Dimetilpolisiloxanos/química , Polietileneimina/química , Madera/química , Adhesividad , Celulosa/química , Lignina/química , Mananos/química , Microscopía de Fuerza Atómica , Modelos Moleculares , Dióxido de Silicio/química , Espectrofotometría , Propiedades de Superficie , Rayos X
5.
ACS Appl Mater Interfaces ; 14(35): 39727-39735, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36000701

RESUMEN

Hydrogels of cross-linked mucin glycoproteins (Muc-gel) have shown strong immune-modulating properties toward macrophages in vitro, which are translated in vivo by the dampening of the foreign body response to implantation in mice. Beyond mucin hydrogels, other biomaterials such as sensors, electrodes, and other long-term implants would also benefit from such immune-modulating properties. In this work, we aimed to transfer the bioactivity observed for three-dimensional Muc-gels to the surface of two model materials by immobilizing mucin into thin films (Muc-film) using covalent layer-by-layer assembly. We tested how the surface immobilization of mucins affects macrophage responses compared to Muc-gels. We showed that Muc-films on soft polyacrylamide gels mimic Muc-gel in their modulation of macrophage responses with activated gene expression of inflammatory cytokines on day 1 and then dampening them on day 3. Also, the markers of polarized macrophages, M1 and M2, were expressed at the same level for macrophages on Muc-film-coated soft polyacrylamide gels and Muc-gel. In contrast, Muc-film-coated hard polystyrene led to a different macrophage response compared to Muc-gel, having no activated expression of inflammatory cytokines and a different M1 marker expression. This suggested that the substrate mechanical properties and mucin molecular configuration determined by substrate-mucin interactions affect mucin immune-modulating properties. We conclude that mucin immune-modulating properties can be transferred to materials by mucin surface immobilization but will be dependent on the substrate chemical and mechanical properties.


Asunto(s)
Hidrogeles , Mucinas , Animales , Materiales Biocompatibles/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo , Glicoproteínas/metabolismo , Hidrogeles/química , Macrófagos/metabolismo , Ratones , Mucina-1/metabolismo , Mucinas/metabolismo
6.
ACS Nano ; 16(10): 15805-15813, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36067037

RESUMEN

Functional wood materials often rely on active additives due to the weak piezoelectric response of wood itself. Here, we chemically modify wood to form functionalized, eco-friendly wood veneer for self-powered vibration sensors. Only the piezoelectricity of the cellulose microfibrils is used, where the drastic improvement comes only from molecular and nanoscale wood structure tuning. Sequential wood modifications (delignification, oxidation, and model fluorination) are performed, and effects on vibration sensing abilities are investigated. Wood veneer piezoelectricity is characterized by the piezoresponse force microscopy mode in atomic force microscopy. Delignification, oxidation, and model fluorination of wood-based sensors provide output voltages of 11.4, 23.2, and 60 mV by facilitating cellulose microfibril deformation. The vibration sensing ability correlates with improved piezoelectricity and increased cellulose deformation, most likely by large, local cell wall bending. This shows that nanostructural wood materials design can tailor the functional properties of wood devices with potential in sustainable nanotechnology.


Asunto(s)
Vibración , Madera , Madera/química , Celulosa/química , Microscopía de Fuerza Atómica , Pared Celular
7.
ACS Nano ; 16(2): 2608-2620, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35104108

RESUMEN

The drying behavior of regenerated cellulose gel beads swollen with different nonsolvents (e.g., water, ethanol, water/ethanol mixtures) is studied in situ on the macroscopic scale with an optical microscope as well as on nanoscale using small-angle/wide-angle X-ray scattering (SAXS/WAXS) techniques. Depending on the cellulose concentration, the structural evolution of beads during drying follows one of three distinct regimes. First, when the cellulose concentration is lower than 0.5 wt %, the drying process comprises three steps and, regardless of the water/ethanol mixture composition, a sharp structural transition corresponding to the formation of a cellulose II crystalline structure is observed. Second, when the cellulose concentration is higher than 5.0 wt %, a two-step drying process is observed and no structural transition occurs for any of the beads studied. Third, when the cellulose concentration is between 0.5 and 5.0 wt %, the drying process is dependent on the nonsolvent composition. A three-step drying process takes place for beads swollen with water/ethanol mixtures with a water content higher than 20%, while a two-step drying process is observed when the water content is lower than 20%. To describe the drying behavior governed by the cellulose concentration and nonsolvent composition, a simplified phase diagram is proposed.


Asunto(s)
Celulosa , Agua , Celulosa/química , Dispersión del Ángulo Pequeño , Agua/química , Difracción de Rayos X
8.
Macromol Biosci ; 22(10): e2200137, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35899862

RESUMEN

Three-dimensional multicellular spheroids (MCSs) are complex structure of cellular aggregates and cell-to-matrix interaction that emulates the in-vivo microenvironment. This research field has grown to develop and improve spheroid generation techniques. Here, we present a new platform for spheroid generation using Layer-by-Layer (LbL) technology. Layer-by-Layer (LbL) containing cellulose nanofibrils (CNF) assemble on a standard 96 well plate. Various bi-layer numbers, multiple cell seeding concentration, and two tumor cell lines (HEK 293 T, HCT 116) are utilized to generate and characterize spheroids. The number and proliferation of generated spheroids, the viability, and the response to the anti-cancer drug are examined. The spheroids are formed and proliferated on the LbL-CNF coated wells with no significant difference in connection to the number of LbL-CNF bi-layers; however, the number of formed spheroids correlates positively with the cell seeding concentration (122 ± 17) and (42 ± 8) for HCT 116 and HEK 293T respectively at 700 cells ml-1 . The spheroids proliferate progressively up to (309, 663) µm of HCT 116 and HEK 293T respectively on 5 bi-layers coated wells with maintaining viability. The (HCT 116) spheroids react to the anti-cancer drug. We demonstrate a new (LbL-CNF) coating strategy for spheroids generation, with high performance and efficiency to test anti-cancer drugs.


Asunto(s)
Antineoplásicos , Celulosa , Antineoplásicos/farmacología , Línea Celular Tumoral , Celulosa/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Esferoides Celulares
9.
Nanoscale ; 12(42): 21788-21797, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33103175

RESUMEN

According to reports by the World Health Organization (WHO), cancer-related deaths reached almost 10 million in 2018. Nearly 65% of these deaths occurred in low- to middle-income countries, a trend that is bound to increase since cancer diagnostics are not currently considered a priority in resource-limited settings (RLS). Thus, cost-effective and specific cancer screening and diagnostics tools are in high demand, particularly in RLS. The selective isolation and up-concentration of rare cells while maintaining cell viability and preventing phenotypic changes is a powerful tool to allow accurate and sensitive downstream analysis. Here, multi-layer cellulose nanofibril-based coatings functionalized with anti-EpCAM antibodies on the surface of disposable microfluidic devices were optimized for specific capture of target cells, followed by efficient release without significant adverse effects. HCT 116 colon cancer cells were captured in a single step with >97% efficiency at 41.25 µL min-1 and, when spiked in whole blood, an average enrichment factor of ∼200-fold relative to white blood cells was achieved. The release of cells was performed by enzymatic digestion of the cellulose nanofibrils which had a negligible impact on cell viability. In particular, >80% of the cells were recovered with at least 97% viability in less than 30 min. Such performance paves the way to expand and improve clinical diagnostic applications by simplifying the isolation of circulating tumor cells (CTCs) and other rare cells directly from whole blood.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Recuento de Células , Línea Celular Tumoral , Separación Celular , Celulosa , Humanos
10.
J Colloid Interface Sci ; 575: 286-297, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32380320

RESUMEN

Antimicrobial surfaces are important in medical, clinical, and industrial applications, where bacterial infection and biofouling may constitute a serious threat to human health. Conventional approaches against bacteria involve coating the surface with antibiotics, cytotoxic polymers, or metal particles. However, these types of functionalization have a limited lifetime and pose concerns in terms of leaching and degradation of the coating. Thus, there is a great interest in developing long-lasting and non-leaching bactericidal surfaces. To obtain a bactericidal surface, we combine micro and nanoscale patterning of borosilicate glass surfaces by ultrashort pulsed laser irradiation and a non-leaching layer-by-layer polyelectrolyte modification of the surface. The combination of surface structure and surface charge results in an enhanced bactericidal effect against both Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. The laser patterning and the layer-by-layer modification are environmentally friendly processes that are applicable to a wide variety of materials, which makes this method uniquely suited for fundamental studies of bacteria-surface interactions and paves the way for its applications in a variety of fields, such as in hygiene products and medical devices.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Escherichia coli/efectos de los fármacos , Rayos Láser , Polielectrolitos/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/química , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Polielectrolitos/síntesis química , Polielectrolitos/química , Propiedades de Superficie , Factores de Tiempo
11.
Adv Mater ; 31(41): e1902977, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31408235

RESUMEN

The family of two-dimensional (2D) metal carbides and nitrides, known as MXenes, are among the most promising electrode materials for supercapacitors thanks to their high metal-like electrical conductivity and surface-functional-group-enabled pseudocapacitance. A major drawback of these materials is, however, the low mechanical strength, which prevents their applications in lightweight, flexible electronics. A strategy of assembling freestanding and mechanically robust MXene (Ti3 C2 Tx ) nanocomposites with one-dimensional (1D) cellulose nanofibrils (CNFs) from their stable colloidal dispersions is reported. The high aspect ratio of CNF (width of ≈3.5 nm and length reaching tens of micrometers) and their special interactions with MXene enable nanocomposites with high mechanical strength without sacrificing electrochemical performance. CNF loading up to 20%, for example, shows a remarkably high mechanical strength of 341 MPa (an order of magnitude higher than pristine MXene films of 29 MPa) while still maintaining a high capacitance of 298 F g-1 and a high conductivity of 295 S cm-1 . It is also demonstrated that MXene/CNF hybrid dispersions can be used as inks to print flexible micro-supercapacitors with precise dimensions. This work paves the way for fabrication of robust multifunctional MXene nanocomposites for printed and lightweight structural devices.


Asunto(s)
Celulosa/química , Capacidad Eléctrica , Fenómenos Mecánicos , Nanocompuestos/química , Electrodos
12.
Chem Commun (Camb) ; 50(83): 12486-9, 2014 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-25189192

RESUMEN

We report a facile one-step route to graft poly(ionic liquid)s (PILs) onto cellulose nanofibrils (CNFs). The dispersibility of the PIL-functionalized CNFs in water and various organic solvents could be tuned by the choice of the PIL-binding anion. We demonstrate that such omnidispersible PIL@CNF hybrids can be used to reinforce porous poly(ionic liquid) membranes.


Asunto(s)
Celulosa/química , Líquidos Iónicos/química , Nanofibras/química , Polímeros/química , Membranas Artificiales , Nanofibras/ultraestructura , Porosidad
13.
ACS Nano ; 6(6): 4731-9, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22639847

RESUMEN

The preparation of multifunctional films and coatings from sustainable, low-cost raw materials has attracted considerable interest during the past decade. In this respect, cellulose-based products possess great promise due not only to the availability of large amounts of cellulose in nature but also to the new classes of nanosized and well-characterized building blocks of cellulose being prepared from trees or annual plants. However, to fully utilize the inherent properties of these nanomaterials, facile and also sustainable preparation routes are needed. In this work, bioinspired hybrid conjugates of carboxymethylated cellulose nanofibrils (CNFC) and dopamine (DOPA) have been prepared and layer-by-layer (LbL) films of these modified nanofibrils have been built up in combination with a branched polyelectrolyte, polyethyleneimine (PEI), to obtain robust, adhesive, and wet-stable nanocoatings on solid surfaces. It is shown that the chemical functionalization of CNFCs with DOPA molecules alters their conventional properties both in liquid dispersion and at the interface and also influences the LbL film formation by reducing the electrostatic interaction. Although the CNFC-DOPA conjugates show a lower colloidal stability in aqueous dispersions due to charge suppression, it was possible to prepare the LbL films through the consecutive deposition of the building blocks. Adhesive forces between multilayer films prepared using chemically functionalized CNFCs and a silica probe are much stronger in the presence of Fe(3+) than those between a multilayer film prepared from unmodified nanofibrils and a silica probe. The present work demonstrates a facile way to prepare chemically functionalized cellulose nanofibrils whereby more extended applications can produce novel cellulose-based materials with different functionalities.


Asunto(s)
Materiales Biomiméticos/química , Bivalvos/química , Celulosa/química , Dopamina/química , Nanopartículas/química , Nanopartículas/ultraestructura , Adhesividad , Animales , Cristalización/métodos , Sustancias Macromoleculares/química , Ensayo de Materiales , Metilación , Conformación Molecular , Tamaño de la Partícula , Propiedades de Superficie
14.
Langmuir ; 23(11): 6053-62, 2007 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-17465581

RESUMEN

The adsorption characteristics of three proteins [bovine serum albumin (BSA), myoglobin (Mb), and cytochrome c (CytC)] onto self-assembled monolayers of mercaptoundecanoic acid (MUA) on both gold nanoparticles (AuNP) and gold surfaces (Au) are described. The combination of quartz crystal microbalance measurements with dissipation (QCM-D) and pH titrations of the zeta-potential provide information on layer structure, surface coverage, and potential. All three proteins formed adsorption layers consisting of an irreversibly adsorbed fraction and a reversibly adsorbed fraction. BSA showed the highest affinity for the MUA/Au, forming an irreversibly adsorbed rigid monolayer with a side-down orientation and packing close to that expected in the jamming limit. In addition, BSA showed a large change in the adsorbed mass due to reversibly bound protein. The data indicate that the irreversibly adsorbed fraction of CytC is a monolayer structure, whereas the irreversibly adsorbed Mb is present in form of a bilayer. The observation of stable BSA complexes on MUA/AuNPs at the isoelectric point by zeta-potential measurements demonstrates that BSA can sterically stabilize MUA/AuNP. On the other hand, MUA/AuNP coated with either Mb or CytC formed a reversible flocculated state at the isoelectric point. The colloidal stability differences may be correlated with weaker binding in the reversibly bound overlayer in the case of Mb and CytC as compared to BSA.


Asunto(s)
Ácidos Grasos/química , Oro/química , Nanopartículas del Metal/química , Proteínas/química , Adsorción , Animales , Técnicas Biosensibles , Bovinos , Materiales Biocompatibles Revestidos/química , Citocromos c/química , Electroquímica , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Mioglobina/química , Cuarzo , Albúmina Sérica Bovina/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA