Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-34074567

RESUMEN

PURPOSE: Radiation therapy (RT) to the head and neck (H&N) region is critical in the management of various pediatric malignancies; however, it may result in late toxicity. This comprehensive review from the Pediatric Normal Tissue Effects in the Clinic (PENTEC) initiative focused on salivary dysfunction and dental abnormalities in survivors who received RT to the H&N region as children. MATERIALS & METHODS: This systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method. RESULTS: Of the 2,164 articles identified through a literature search, 40 were included in a qualitative synthesis and 3 were included in a quantitative synthesis. The dose-toxicity data regarding salivary function demonstrate that a mean parotid dose of 35 to 40 Gy is associated with a risk of acute and chronic grade ≥2 xerostomia of approximately 32% and 13% to 32%, respectively, in patients treated with chemo-radiation therapy. This risk increases with parotid dose; however, rates of xerostomia after lower dose exposure have not been reported. Dental developmental abnormalities are common after RT to the oral cavity. Risk factors include higher radiation dose to the developing teeth and younger age at RT. CONCLUSIONS: This PENTEC task force considers adoption of salivary gland dose constraints from the adult experience to be a reasonable strategy until more data specific to children become available; thus, we recommend limiting the parotid mean dose to ≤26 Gy. The minimum toxic dose for dental developmental abnormalities is unknown, suggesting that the dose to the teeth should be kept as low as possible particularly in younger patients, with special effort to keep doses <20 Gy in patients <4 years old.

2.
Phys Med Biol ; 64(22): 225007, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31581139

RESUMEN

The goal of this work is to validate the use of the Exradin W1 plastic scintillation detector (PSD) to measure profiles and output factors from Gamma Knife Perfexion collimators in a Lucy phantom. The Exradin W1 PSD has a small-volume, near-water-equivalent, energy-independent sensitive element. Output measurements were performed for all 3 collimators (4 mm, 8 mm, and 16 mm) of the Gamma Knife Perfexion system, and these measurements were compared to measurements made with an A16 ion chamber and an EBT3 film and to the nominal values. We showed that a configuration in which the focus or 'shot' moves while the detector remains fixed is essentially equivalent to a configuration in which the focus is fixed while the detector moves. A Lucy phantom containing a PSD was moved in small steps to acquire profiles in all three dimensions. EBT3 film was inserted in the Lucy phantom and exposed to a single shot for each collimator. The relative values for output factors measured with the PSD were 1.000, 0.892, and 0.795, for the 16 mm, 8 mm, and 4 mm collimators, respectively. The values measured with EBT3 film were 1.000, 0.881, and 0.793, and the values measured with the A16 ion chamber were 1.000, 0.883, and 0.727. The nominal output factors for the Gamma Knife Perfexion are 1.000, 0.900, and 0.814, respectively. There was excellent agreement between all profiles measured with the PSD and EBT3 as well as with the treatment planning system data provided by the vendor. In light of our results, the Exradin W1 PSD is well suited for beam quality assurance of a Gamma Knife Perfexion irradiator.


Asunto(s)
Fantasmas de Imagen , Plásticos , Radiocirugia/instrumentación , Conteo por Cintilación/instrumentación , Control de Calidad , Radiometría , Radiocirugia/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA