Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ann Neurol ; 96(1): 170-174, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613459

RESUMEN

Quantitative muscle fat fraction (FF) responsiveness is lower in younger Charcot-Marie-Tooth disease type 1A (CMT1A) patients with lower baseline calf-level FF. We investigated the practicality, validity, and responsiveness of foot-level FF in this cohort involving 22 CMT1A patients and 14 controls. The mean baseline foot-level FF was 25.9 ± 20.3% in CMT1A patients, and the 365-day FF (n = 15) increased by 2.0 ± 2.4% (p < 0.001 vs controls). Intrinsic foot-level FF demonstrated large responsiveness (12-month standardized response mean (SRM) of 0.86) and correlated with the CMT examination score (ρ = 0.58, P = 0.01). Intrinsic foot-level FF has the potential to be used as a biomarker in future clinical trials involving younger CMT1A patients. ANN NEUROL 2024;96:170-174.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Progresión de la Enfermedad , Pie , Imagen por Resonancia Magnética , Músculo Esquelético , Humanos , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Masculino , Femenino , Adolescente , Imagen por Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiopatología , Adulto Joven
2.
Brain ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481354

RESUMEN

Charcot-Marie-Tooth disease (CMT) is one of the most common and genetically heterogeneous inherited neurological diseases, with more than 130 disease-causing genes. Whole genome sequencing (WGS) has improved diagnosis across genetic diseases, but the diagnostic impact in CMT is yet to be fully reported. We present the diagnostic results from a single specialist inherited neuropathy centre, including the impact of WGS diagnostic testing. Patients were assessed at our specialist inherited neuropathy centre from 2009-2023. Genetic testing was performed using single gene testing, next-generation sequencing targeted panels, research whole exome and whole genome sequencing (WGS), and latterly WGS through the UK National Health Service. Variants were assessed using the American College of Medical Genetics and Genomics and Association for Clinical Genomic Science criteria. Excluding patients with hereditary ATTR amyloidosis, 1515 patients with a clinical diagnosis of CMT and related disorders were recruited. 621 patients had CMT1 (41.0%), 294 CMT2 (19.4%), 205 intermediate CMT (CMTi, 13.5%), 139 hereditary motor neuropathy (HMN, 9.2%), 93 hereditary sensory neuropathy (HSN, 6.1%), 38 sensory ataxic neuropathy (2.5%), 72 hereditary neuropathy with liability to pressure palsies (HNPP, 4.8%) and 53 'complex' neuropathy (3.5%). Overall, a genetic diagnosis was reached in 76.9% (1165/1515). A diagnosis was most likely in CMT1 (96.8%, 601/621), followed by CMTi (81.0%, 166/205) and then HSN (69.9%, 65/93). Diagnostic rates remained less than 50% in CMT2, HMN and complex neuropathies. The most common genetic diagnosis was PMP22 duplication (CMT1A; 505/1165, 43.3%), then GJB1 (CMTX1; 151/1165, 13.0%), PMP22 deletion (HNPP; 72/1165, 6.2%) and MFN2 (CMT2A; 46/1165, 3.9%). We recruited 233 cases to the UK 100,000 Genomes Project (100KGP), of which 74 (31.8%) achieved a diagnosis; 28 had been otherwise diagnosed since recruitment leaving a true diagnostic rate of WGS through the 100KGP of 19.7% (46/233). However, almost half of the solved cases (35/74) received a negative report from the study, and the diagnosis was made through our research access to the WGS data. The overall diagnostic uplift of WGS for the entire cohort was 3.5%. Our diagnostic rate is the highest reported from a single centre, and has benefitted from the use of WGS, particularly access to the raw data. However, almost one quarter of all cases remain unsolved, and a new reference genome and novel technologies will be important to narrow the 'diagnostic gap'.

3.
Brain ; 146(10): 4025-4032, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37337674

RESUMEN

Copy number variation (CNV) may lead to pathological traits, and Charcot-Marie-Tooth disease type 1A (CMT1A), the commonest inherited peripheral neuropathy, is due to a genomic duplication encompassing the dosage-sensitive PMP22 gene. MicroRNAs act as repressors on post-transcriptional regulation of gene expression and in rodent models of CMT1A, overexpression of one such microRNA (miR-29a) has been shown to reduce the PMP22 transcript and protein level. Here we present genomic and functional evidence, for the first time in a human CNV-associated phenotype, of the 3' untranslated region (3'-UTR)-mediated role of microRNA repression on gene expression. The proband of the family presented with an early-onset, severe sensorimotor demyelinating neuropathy and harboured a novel de novo deletion in the PMP22 3'-UTR. The deletion is predicted to include the miR-29a seed binding site and transcript analysis of dermal myelinated nerve fibres using a novel platform, revealed a marked increase in PMP22 transcript levels. Functional evidence from Schwann cell lines harbouring the wild-type and mutant 3'-UTR showed significantly increased reporter assay activity in the latter, which was not ameliorated by overexpression of a miR-29a mimic. This shows the importance of miR-29a in regulating PMP22 expression and opens an avenue for therapeutic drug development.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , MicroARNs , Humanos , Enfermedad de Charcot-Marie-Tooth/patología , MicroARNs/genética , Variaciones en el Número de Copia de ADN , Proteínas de la Mielina/genética , Proteínas de la Mielina/metabolismo , Expresión Génica
4.
Artículo en Inglés | MEDLINE | ID: mdl-37979968

RESUMEN

BACKGROUND: Lower limb muscle magnetic resonance imaging (MRI) obtained fat fraction (FF) can detect disease progression in patients with Charcot-Marie-Tooth disease 1A (CMT1A). However, analysis is time-consuming and requires manual segmentation of lower limb muscles. We aimed to assess the responsiveness, efficiency and accuracy of acquiring FF MRI using an artificial intelligence-enabled automated segmentation technique. METHODS: We recruited 20 CMT1A patients and 7 controls for assessment at baseline and 12 months. The three-point-Dixon fat water separation technique was used to determine thigh-level and calf-level muscle FF at a single slice using regions of interest defined using Musclesense, a trained artificial neural network for lower limb muscle image segmentation. A quality control (QC) check and correction of the automated segmentations was undertaken by a trained observer. RESULTS: The QC check took on average 30 seconds per slice to complete. Using QC checked segmentations, the mean calf-level FF increased significantly in CMT1A patients from baseline over an average follow-up of 12.5 months (1.15%±1.77%, paired t-test p=0.016). Standardised response mean (SRM) in patients was 0.65. Without QC checks, the mean FF change between baseline and follow-up, at 1.15%±1.68% (paired t-test p=0.01), was almost identical to that seen in the corrected data, with a similar overall SRM at 0.69. CONCLUSIONS: Using automated image segmentation for the first time in a longitudinal study in CMT, we have demonstrated that calf FF has similar responsiveness to previously published data, is efficient with minimal time needed for QC checks and is accurate with minimal corrections needed.

5.
J Neurol Neurosurg Psychiatry ; 93(1): 48-56, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34518334

RESUMEN

OBJECTIVE: Neurofilaments are the major scaffolding proteins for the neuronal cytoskeleton, and variants in NEFH have recently been described to cause axonal Charcot-Marie-Tooth disease type 2CC (CMT2CC). METHODS: In this large observational study, we present phenotype-genotype correlations on 30 affected and 3 asymptomatic mutation carriers from eight families. RESULTS: The majority of patients presented in adulthood with motor-predominant and lower limb-predominant symptoms and the average age of onset was 31.0±15.1 years. A prominent feature was the development of proximal weakness early in the course of the disease. The disease progressed rapidly, unlike other Charcot-Marie-Tooth disease (CMT) subtypes, and half of the patients (53%) needed to use a wheelchair on average 24.1 years after symptom onset. Furthermore, 40% of patients had evidence of early ankle plantarflexion weakness, a feature which is observed in only a handful of CMT subtypes. Neurophysiological studies and MRI of the lower limbs confirmed the presence of a non-length-dependent neuropathy in the majority of patients.All families harboured heterozygous frameshift variants in the last exon of NEFH, resulting in a reading frameshift to an alternate open reading frame and the translation of approximately 42 additional amino acids from the 3' untranslated region (3'-UTR). CONCLUSIONS: This phenotype-genotype study highlights the unusual phenotype of CMT2CC, which is more akin to spinal muscular atrophy rather than classic CMT. Furthermore, the study will enable more informative discussions on the natural history of the disease and will aid in NEFH variant interpretation in the context of the disease's unique molecular genetics.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Filamentos Intermedios/genética , Adulto , Exones , Femenino , Genotipo , Heterocigoto , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación , Proteínas de Neurofilamentos/genética , Neuronas , Linaje , Fenotipo , Nervio Sural , Adulto Joven
6.
Brain ; 143(12): 3589-3602, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33415332

RESUMEN

Mitofusin-2 (MFN2) is one of two ubiquitously expressed homologous proteins in eukaryote cells, playing a critical role in mitochondrial fusion. Mutations in MFN2 (most commonly autosomal dominant) cause Charcot-Marie-Tooth disease type 2A (CMT2A), the commonest axonal form of CMT, with significant allelic heterogeneity. Previous, moderately-sized, cross sectional genotype-phenotype studies of CMT2A have described the phenotypic spectrum of the disease, but longitudinal natural history studies are lacking. In this large multicentre prospective cohort study of 196 patients with dominant and autosomal recessive CMT2A, we present an in-depth genotype-phenotype study of the baseline characteristics of patients with CMT2A and longitudinal data (1-2 years) to describe the natural history. A childhood onset of autosomal dominant CMT2A is the most predictive marker of significant disease severity and is independent of the disease duration. When compared to adult onset autosomal dominant CMT2A, it is associated with significantly higher rates of use of ankle-foot orthoses, full-time use of wheelchair, dexterity difficulties and also has significantly higher CMT Examination Score (CMTESv2) and CMT Neuropathy Score (CMTNSv2) at initial assessment. Analysis of longitudinal data using the CMTESv2 and its Rasch-weighted counterpart, CMTESv2-R, show that over 1 year, the CMTESv2 increases significantly in autosomal dominant CMT2A (mean change 0.84 ± 2.42; two-tailed paired t-test P = 0.039). Furthermore, over 2 years both the CMTESv2 (mean change 0.97 ± 1.77; two-tailed paired t-test P = 0.003) and the CMTESv2-R (mean change 1.21 ± 2.52; two-tailed paired t-test P = 0.009) increase significantly with respective standardized response means of 0.55 and 0.48. In the paediatric CMT2A population (autosomal dominant and autosomal recessive CMT2A grouped together), the CMT Pediatric Scale increases significantly both over 1 year (mean change 2.24 ± 3.09; two-tailed paired t-test P = 0.009) and over 2 years (mean change 4.00 ± 3.79; two-tailed paired t-test P = 0.031) with respective standardized response means of 0.72 and 1.06. This cross-sectional and longitudinal study of the largest CMT2A cohort reported to date provides guidance for variant interpretation, informs prognosis and also provides natural history data that will guide clinical trial design.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/patología , Adolescente , Adulto , Edad de Inicio , Enfermedad de Charcot-Marie-Tooth/genética , Niño , Preescolar , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , GTP Fosfohidrolasas/genética , Genes Dominantes , Genes Recesivos , Estudios de Asociación Genética , Marcadores Genéticos , Humanos , Lactante , Estudios Longitudinales , Masculino , Proteínas Mitocondriales/genética , Examen Neurológico , Aparatos Ortopédicos/estadística & datos numéricos , Pronóstico , Estudios Prospectivos , Silla de Ruedas , Adulto Joven
7.
J Peripher Nerv Syst ; 25(3): 288-291, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32844461

RESUMEN

The CMT-FOM is a 13-item clinical outcome assessment (COA) that measures physical ability in adults with Charcot-Marie-Tooth disease (CMT). Test-retest reliability, internal consistency and convergent validity have been established for the CMT-FOM. This current study sought to establish inter-rater reliability. Following an in-person training of six international clinical evaluators we recruited 10 participants with genetically diagnosed CMT1A, (aged 18-74 years, 6 female). Participants were evaluated using the CMT-FOM over 2 days. Participants were given at least a 3 hour rest between evaluations, and were assessed twice each day. Following the provision of training by master trainers, all 13 items of the CMT-FOM exhibited excellent inter-rater reliability for raw scores (ICC1,1 0.825-0.989) and z-scores (ICC1,1 0.762-0.969). Reliability of the CMT-FOM total score was excellent (ICC1,1 0.983, 95% CI 0.958-0.995). The CMT-FOM is a reliable COA used by clinical evaluators internationally. The next steps are to establish further validation through psychometric evaluation of the CMT-FOM in the Accelerate Clinical Trials in CMT (ACT-CMT) study.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/diagnóstico , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/normas , Psicometría/métodos , Psicometría/normas , Índice de Severidad de la Enfermedad , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
8.
Curr Opin Neurol ; 32(5): 641-650, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31343428

RESUMEN

PURPOSE OF REVIEW: Charcot-Marie-Tooth (CMT) disease and related disorders are the commonest group of inherited neuromuscular diseases and represent a heterogeneous group of disorders. This review will cover recent advances in genetic diagnosis and the evolving genetic and phenotype landscape of this disease group. We will review recent evidence of the increasingly recognized phenotypic overlap with other neurodegenerative conditions including hereditary spastic paraplegia, hereditary ataxias and mitochondrial diseases and highlight the importance of deep phenotyping to inform genetic diagnosis and prognosis. RECENT FINDINGS: Through whole exome sequencing and multicentre collaboration new genes are being identified as causal for CMT expanding the genetic heterogeneity of this condition. In addition, an increasing number of variants have been identified in genes known to cause complex inherited diseases in which the peripheral neuropathy is part of the disorder and may be the presenting feature. The recent discovery of a repeat expansion in the RFC1 gene in cerebellar ataxia, neuropathy, vestibular areflexia syndrome highlights the prevalence of late-onset recessive conditions which have historically been considered to cause early-onset disease. SUMMARY: CMT is an evolving field with considerable phenotypic and genetic heterogeneity and deep phenotyping remains a cornerstone in contemporary CMT diagnostics.


Asunto(s)
Ataxia Cerebelosa/diagnóstico , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Mutación , Paraplejía Espástica Hereditaria/diagnóstico , Ataxia Cerebelosa/genética , Enfermedad de Charcot-Marie-Tooth/genética , Pruebas Genéticas , Humanos , Fenotipo , Paraplejía Espástica Hereditaria/genética
10.
medRxiv ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39006432

RESUMEN

Defects in mitochondrial dynamics are a common cause of Charcot-Marie-Tooth disease (CMT), while primary deficiencies in the mitochondrial respiratory chain (MRC) are rare and atypical for this etiology. This study aims to report COX18 as a novel CMT-causing gene. This gene encodes an assembly factor of mitochondrial Complex IV (CIV) that translocates the C-terminal tail of MTCO2 across the mitochondrial inner membrane. Exome sequencing was performed in four affected individuals. The patients and available family members underwent thorough neurological and electrophysiological assessment. The impact of one of the identified variants on splicing, protein levels, and mitochondrial bioenergetics was investigated in patient-derived lymphoblasts. The functionality of the mutant protein was assessed using a Proteinase K protection assay and immunoblotting. Neuronal relevance of COX18 was assessed in a Drosophila melanogaster knockdown model. Exome sequencing coupled with homozygosity mapping revealed a homozygous splice variant c.435-6A>G in COX18 in two siblings with early-onset progressive axonal sensory-motor peripheral neuropathy. By querying external databases, we identified two additional families with rare deleterious biallelic variants in COX18 . All affected individuals presented with axonal CMT and some patients also exhibited central nervous system symptoms, such as dystonia and spasticity. Functional characterization of the c.435-6A>G variant demonstrated that it leads to the expression of an alternative transcript that lacks exon 2, resulting in a stable but defective COX18 isoform. The mutant protein impairs CIV assembly and activity, leading to a reduction in mitochondrial membrane potential. Downregulation of the COX18 homolog in Drosophila melanogaster displayed signs of neurodegeneration, including locomotor deficit and progressive axonal degeneration of sensory neurons. Our study presents genetic and functional evidence that supports COX18 as a newly identified gene candidate for autosomal recessive axonal CMT with or without central nervous system involvement. These findings emphasize the significance of peripheral neuropathy within the spectrum of primary mitochondrial disorders and the role of mitochondrial CIV in the development of CMT. Our research has important implications for the diagnostic workup of CMT patients.

11.
Ann Clin Transl Neurol ; 11(3): 607-617, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38173284

RESUMEN

OBJECTIVE: With potential therapies for many forms of Charcot-Marie-Tooth disease (CMT), responsive outcome measures are urgently needed for clinical trials. Quantitative lower limb MRI demonstrated progressive calf intramuscular fat accumulation in the commonest form, CMT1A with large responsiveness. In this study, we evaluated the responsiveness and validity in the three other common forms, due to variants in GJB1 (CMTX1), MPZ (CMT1B) and MFN2 (CMT2A). METHODS: 22 CMTX1, 21 CMT1B and 21 CMT2A patients and matched controls were assessed at a 1-year interval. Intramuscular fat fraction (FF) was evaluated using three-point Dixon MRI at thigh and calf level along with clinical measures including CMT examination score, clinical strength assessment, CMT-HI and plasma neurofilament light chain. RESULTS: All patient groups had elevated muscle fat fraction at thigh and calf levels, with highest thigh FF and atrophy in CMT2A. There was moderate correlation between calf muscle FF and clinical measures (CMTESv2 rho = 0.405; p = 0.001, ankle MRC strength rho = -0.481; p < 0.001). Significant annualised progression in calf muscle FF was seen in all patient groups (CMTX1 2.0 ± 2.0%, p < 0.001, CMT1B 1.6 ± 2.1% p = 0.004 and CMT2A 1.6 ± 2.1% p = 0.002). Greatest increase was seen in patients with 10-70% FF at baseline (calf 2.7 ± 2.3%, p < 0.0001 and thigh 1.7 ± 2.1%, p = 0.01). INTERPRETATION: Our results confirm that calf muscle FF is highly responsive over 12 months in three additional common forms of CMT which together with CMT1A account for 90% of genetically confirmed cases. Calf muscle MRI FF should be a valuable outcome measure in upcoming CMT clinical trials.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Humanos , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Músculo Esquelético/diagnóstico por imagen , Extremidad Inferior/diagnóstico por imagen , Imagen por Resonancia Magnética , Evaluación de Resultado en la Atención de Salud
12.
Nat Rev Neurol ; 15(11): 644-656, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31582811

RESUMEN

Charcot-Marie-Tooth disease and the related disorders hereditary motor neuropathy and hereditary sensory neuropathy, collectively termed CMT, are the commonest group of inherited neuromuscular diseases, and they exhibit wide phenotypic and genetic heterogeneity. CMT is usually characterized by distal muscle atrophy, often with foot deformity, weakness and sensory loss. In the past decade, next-generation sequencing (NGS) technologies have revolutionized genomic medicine and, as these technologies are being applied to clinical practice, they are changing our diagnostic approach to CMT. In this Review, we discuss the application of NGS technologies, including disease-specific gene panels, whole-exome sequencing, whole-genome sequencing (WGS), mitochondrial sequencing and high-throughput transcriptome sequencing, to the diagnosis of CMT. We discuss the growing challenge of variant interpretation and consider how the clinical phenotype can be combined with genetic, bioinformatic and functional evidence to assess the pathogenicity of genetic variants in patients with CMT. WGS has several advantages over the other techniques that we discuss, which include unparalleled coverage of coding, non-coding and intergenic areas of both nuclear and mitochondrial genomes, the ability to identify structural variants and the opportunity to perform genome-wide dense homozygosity mapping. We propose an algorithm for incorporating WGS into the CMT diagnostic pathway.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Pruebas Genéticas/tendencias , Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Pruebas Genéticas/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA