Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicology ; 32(3): 300-308, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36905483

RESUMEN

Microplastic (MP) is yet another form of chronic anthropogenic contribution to the environment. MPs are plastic particles (<5 mm) that have been widely found in the most diverse natural environments, but their real impacts on ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the third instar larvae of Chironomus sancticaroli, a dipteran species. The concentrations tested were 13.5; 67.5; and 135 items g-1 of dry sediment. C. sancticaroli organisms were investigated for fragment ingestion, mortality and changes in enzymatic biomarkers after 144 h of exposure. The organisms were able to ingest MPs from the first 48 h, and the amount of items internalized was dose-dependent and time-dependent. Overall, the results show that mortality was low, being significant at the lowest and highest concentrations (13.5 and 135 items g-1). Regarding changes in biochemical markers, after 144 h MDA and CAT activities were both significantly altered (increased and reduced, respectively), while SOD and GST levels were unchanged. In the present study, naturally aged polypropylene MPs induced biochemical toxicity in C. sancticaroli larvae, with toxicity being higher according to exposure time and particle concentration.


Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Animales , Microplásticos , Plásticos/toxicidad , Polipropilenos/toxicidad , Chironomidae/fisiología , Ecosistema , Rayos Ultravioleta , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Larva
2.
Aquat Toxicol ; 258: 106516, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004465

RESUMEN

Microplastics are widespread pollutants in the environment and are considered a global pollution problem. Microplastics mostly originate from larger plastics and due to environmental conditions are undergoing constant fragmentation processes. It is important to understand the fragmentation pathways, since they play a key role in the fate of the particles, and also directly influence toxicity. Amphipods are potential inducers of plastic debris fragmentation. Here, Hyalella azteca was exposed to different concentrations (540, 2700, 5400 items/L) of 24.5 µm polystyrene microplastics (PS-MP) for 7 days. After exposure, oxidative stress, particle size reduction, and mortality were checked. No significant mortality was seen in any of the treatments, although changes were recorded in all enzymatic biomarkers analyzed. It was observed that throughout the ingestion and egestion of PS-MP by H. azteca, particles underwent intense fragmentation, presenting a final size up to 25.3% smaller than the initial size. The fragmentation over time (24, 72, 120, 168 h) was verified and the results showed a constant reduction in average particle size indicating that H. azteca are able to induce PS-MP fragmentation. This process may facilitate bioaccumulation and trophic particle transfer.


Asunto(s)
Anfípodos , Contaminantes Químicos del Agua , Animales , Microplásticos/metabolismo , Plásticos/toxicidad , Anfípodos/metabolismo , Contaminantes Químicos del Agua/toxicidad , Poliestirenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA