Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Pharm ; 19(9): 3439-3449, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35994700

RESUMEN

The combined delivery of chemotherapeutics with checkpoint inhibitors of the PD-1/PD-L1 pathway provides a new approach for cancer treatment. Small-molecule peptide inhibitors possess short production cycle, low immunogenicity, and fewer side effects; however, their potential in cancer therapy is hampered by the rapid biodegradation and a nanocarrier is needed for efficient drug delivery. Herein, anticancer drug doxorubicin (DOX) and PD-L1 inhibitor peptide P-12 are co-loaded by a lipid polymer nanocomplex based on poly(lactic-co-glycolic acid) (PLGA) and DSPE-PEG. Octaarginine (R8)-conjugated DSPE-PEG renders the LPN efficient internalization by cancer cells. The optimal nanomedicine LPN-30-R82K@DP shows a diameter of 125 nm and a DOX and P-12 loading content of 5.0 and 6.2%, respectively. LPN-30-R82K@DP exhibits good physiological stability and enhanced cellular uptake by cancer cells. It successfully induces immunogenic cell death and PD-L1 blockade in CT26 cancer cells. The in vivo antitumor study further suggests that co-loaded nanomedicine efficiently suppresses CT26 tumor growth and elicits antitumor immune response. This study manifests that lipid polymer nanocomplexes are promising drug carriers for the efficient chemo-immunotherapy of cancer.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Doxorrubicina/química , Inmunoterapia , Lípidos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Polímeros/química
2.
Biomacromolecules ; 22(3): 1167-1176, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33566577

RESUMEN

In this study, we reported a nanocomplex (PAF) of PEGylated polygalacturonic acid, 5,10,15,20-tetrakis (4-aminophenyl) porphyrin (TAPP), and Fe3+ for photodynamic therapy (PDT)-enhanced ferroptosis in cancer treatment. PAF exhibited a size of 135 nm and a TAPP and Fe3+ loading content of 6.99 and 0.77%, respectively. The singlet oxygen (1O2) generation capacity of TAPP can be activated and significantly enhanced at acidic pH (4.5-5.0). Besides, the enhanced near-infrared absorption of TAPP at acidic pH enabled a further increase in 1O2 generation capability by a near-infrared laser (760 nm). The polysaccharide-based polymer carrier offers excellent biocompatibility, and PAF displayed a proliferative effect in both normal (L929) and cancer (B16) cells. However, upon light irradiation, PAF exhibited high toxicity to B16 melanoma cells by intracellular reactive oxygen species elevation, glutathione depletion, and lipid peroxidation. PAF displayed a much better anticancer effect than the nanocomplex containing Fe3+ or TAPP alone, indicating the PDT-enhanced ferroptosis in PAF. This study suggested that PDT-enhanced ferroptosis could be a facile and robust strategy of nanotherapeutics with high potency, tumor selectivity, and excellent biocompatibility.


Asunto(s)
Ferroptosis , Nanopartículas , Neoplasias , Fotoquimioterapia , Concentración de Iones de Hidrógeno , Fármacos Fotosensibilizantes , Polímeros , Oxígeno Singlete
3.
Biomacromolecules ; 19(7): 3140-3148, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29883542

RESUMEN

Nanoparticle- and microsphere-based drug delivery systems (DDSs) have attracted wide attention in cancer therapy; those DDSs that are responsive to tumor environment can selectively identify tumor and normal tissues and therefore have shown enhanced anticancer efficacy and alleviated systemic toxicity. Here, tumor-pH-sensitive polymeric microspheres, which are prepared by multiblock poly(l-lactide) with pH-sensitive acetal bonds in the backbone, are employed to efficiently load water-soluble anticancer drug doxorubicin hydrochloride (DOX·HCl, drug loading content: ∼10%). The pH-sensitive DOX-loaded hollow microspheres were in the size range 2-10 µm and exhibited acid-accelerated degradation of polymer matrix and drug release, and thereby efficient in vitro cancer cell inhibition. The microspheres were further intratumorally injected into breast-tumor-bearing mice, and the in vivo anticancer experiment showed that pH-sensitive DOX-loaded microsphere showed better antitumor efficiency and prolonged life-span than its counterpart that does not have pH-responsive property. Moreover, negligible organ toxicity, especially cardiotoxicity that generally exists in DOX-involved chemotherapy where DOX is administrated by intravenous injection, was observed for DOX-loaded microspheres. Hence, tumor-pH-sensitive polymeric microspheres have appeared to be a simple and efficient platform for delivering hydrophilic anticancer drug with excellent anticancer efficacy and low systemic toxicity.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Microesferas , Poliésteres/química , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Cardiotoxicidad , Línea Celular , Línea Celular Tumoral , Doxorrubicina/administración & dosificación , Doxorrubicina/efectos adversos , Doxorrubicina/farmacocinética , Portadores de Fármacos/farmacocinética , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C
4.
Biomacromolecules ; 19(12): 4658-4667, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30418756

RESUMEN

Due to the high oxidative stress of the tumor microenvironment, more and more researchers have been devoted to reactive oxygen species (ROS)-responsive nanodrug delivery systems for anticancer therapy. Herein, a ROS-responsive moiety, thioacetal, was synthesized, and cinnamaldehyde (CA) was introduced in the polymer chain to trigger the generation of ROS to expect the enhancement of the ROS-responsive effect. The poly(ester-thioacetal) mPEG2k - b-(NTA-HD)12 polymer, its self-assembled micelles, and the ROS-responsive behavior were characterized by 1H NMR and DLS. The anticancer drug doxorubicin (DOX) was adopted to prepare DOX-loaded poly(ester-thioacetal) micelles. The intracellular ROS detection indicated that the mPEG2k - b-(NTA-HD)12 polymer could degrade via the high concentration of ROS in cancer cells, and the released CA stimulated mitochondria to regenerate additional ROS. The flow cytometry results indicated that the ROS-responsive polymeric micelles showed faster cellular uptake compared to the control mPEG2k - b-PCL5k micelles. The ROS responsive DOX/mPEG2k - b-(NTA-HD)12 micelles exhibited much better anticancer efficiency on both 4T1 and HeLa cancer cells than DOX/mPEG2k - b-PCL5k micelles.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Nanopartículas/administración & dosificación , Neoplasias/tratamiento farmacológico , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacología , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos , Células HeLa , Humanos , Micelas , Nanopartículas/química , Poliésteres/química , Polímeros/química , Especies Reactivas de Oxígeno
5.
Biomacromolecules ; 18(1): 44-55, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28009508

RESUMEN

Cationic polymethacrylates are interesting candidates for bacterial disinfectants since they can be made in large-scale by various well-established polymerization techniques such as atom transfer radical polymerization (ATRP). However, they are usually toxic or ineffective in serum and various strategies to improve their biocompatibility or nonfouling property have often resulted in compromised bactericidal activity. Also, star-shaped polymers are less explored than linear polymers for application as antibacterial compounds. In this paper, star polymers with poly[2-(dimethylamino)ethyl methacrylate] (PDMA) as the arms and polyhedral oligomeric silsesquioxane (POSS) as the core (POSS-g-PDMA) were successfully synthesized by ATRP. The minimum inhibition concentrations (MICs) of the synthesized POSS-g-PDMA are in the range of 10-20 µg/mL. POSS-g-PDMA was further modified by various hydrophilization strategies in attempting to reduce hemolysis. With quaternization of POSS-g-PDMA, the antibacterial activities of the obtained quaternary polymers are almost unchanged and the copolymers become relatively nonhemolytic. We also copolymerized sulfobetaine (SB) with POSS-g-PDMA to obtain random and block PDMA-co-PSB arm structures, where the PDMA and poly(sulfobetaine) were the cationic and zwitterionic blocks, respectively. The random cationic-zwitterionic POSS-g-(PDMA-r-PSB) copolymers showed poor antibacterial activity, while the block POSS-g-(PDMA-b-PSB) copolymers retained the antibacterial and hemolytic activity of the pristine POSS-g-PDMA. Further, the block copolymers of POSS-g-(PDMA-b-PSB) showed enhanced antifouling property and serum stability as seen by their nanoparticle size stability in the presence of serum and reduced red blood cell aggregation; the POSS-g-(PDMA-b-PSB) also somewhat retained its MIC in blood unlike the quaternized or random zwitterionic copolymers. The antibacterial kinetics study showed that Escherichia coli can be killed within 30 min by both random and block copolymers of POSS-g-(PDMA-co-PSB). Finally, our POSS star polymers showed low toxicity to zebrafish embryo and could be potentially used in aquaculture antibacterial applications.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Betaína/análogos & derivados , Metacrilatos/química , Polímeros/síntesis química , Polímeros/farmacología , Compuestos de Amonio Cuaternario/química , Animales , Betaína/química , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Células 3T3 NIH , Pez Cebra/embriología
6.
Org Biomol Chem ; 15(43): 9176-9185, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29072771

RESUMEN

As the implications of reactive oxygen species (ROS) are elucidated in many diseases, ROS-responsive nanoparticles are attracting great interest from researchers. In this work, a ROS sensitive thioketal (TK) moiety with a π-conjugated structure was introduced into biodegradable methoxy poly(ethylene glycol)-thioketal-poly(ε-caprolactone)mPEG-TK-PCL micelles as a linker, which was designed to speed up the drug release and thus enhance the therapeutic efficacy. The micelle showed a high drug loading content of 12.8% and excellent stability under physiological conditions because of the evocation of π-π stacking and hydrophobic interactions with the anticancer drug doxorubicin (DOX). The polymeric micelle presented a better drug carrier capacity and higher in vitro anticancer efficacy towards cancer cells. The in vivo study showed that DOX-loaded mPEG-TK-PCL micelles displayed lower toxicity towards normal cells and remarkably enhanced antitumor efficacy. This research provides a way to design potential drug carriers for efficient cancer chemotherapy.


Asunto(s)
Acetales/química , Portadores de Fármacos/química , Micelas , Polímeros/química , Animales , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/metabolismo , Liberación de Fármacos , Cetonas/química , Ratones
7.
ACS Nano ; 18(1): 229-244, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38112525

RESUMEN

Colonic epithelial damage and dysregulated immune response are crucial factors in the progression and exacerbation of inflammatory bowel disease (IBD). Nanoenabled targeted drug delivery to the inflamed intestinal mucosa has shown promise in inducing and maintaining colitis remission, while minimizing side effects. Inspired by the excellent antioxidative and anti-inflammatory efficacy of naturally derived magnolol (Mag) and gut homeostasis regulation of microbiota-derived butyrate, we developed a pH/redox dual-responsive butyrate-rich polymer nanoparticle (PSBA) as an oral Mag delivery system for combinational therapy of IBD. PSBA showed a high butyrate content of 22% and effectively encapsulated Mag. The Mag-loaded nanoparticles (PSBA@Mag) demonstrated colonic pH and reduction-responsive drug release, ensuring efficient retention and adhesion in the colon of colitis mice. PSBA@Mag not only normalized the level of reactive oxygen species and inflammatory effectors in inflamed colonic mucosa but also restored the epithelial barrier function in both ulcerative colitis and Crohn's disease mouse models. Importantly, PSBA promoted the migration and healing ability of intestinal epithelial cells in vitro and in vivo, sensitizing the therapeutic efficacy of Mag in animal models. Moreover, transcriptomics and metabolism analyses revealed that PSBA@Mag mitigated inflammation by suppressing the production of pro-inflammatory cytokines and chemokines and restoring the lipid metabolism. Additionally, this nanomedicine modulated the gut microbiota by inhibiting pathogenic Proteus and Escherichia-Shigella and promoting the proliferation of beneficial probiotics, including Lachnoclostridium, Lachnospiraceae_NK4A136_group and norank_f_Ruminococcaceae. Overall, our findings highlight the potential of butyrate-functionalized polymethacrylates as versatile and effective nanoplatforms for colonic drug delivery and mucosa repair in combating IBD and other gastrointestinal disorders.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Polímeros/farmacología , Butiratos/metabolismo , Butiratos/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Mucosa Intestinal , Colon/metabolismo , Colitis/metabolismo , Modelos Animales de Enfermedad
8.
J Control Release ; 354: 1-18, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36566845

RESUMEN

The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Polímeros , Humanos , Polímeros/uso terapéutico , Mucosa Intestinal , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Intestinos , Sistemas de Liberación de Medicamentos
9.
Acta Biomater ; 151: 480-490, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926781

RESUMEN

Reactive oxygen species (ROS) are important signal molecules and imbalanced ROS level could lead to cell death. Elevated ROS levels in tumor tissues offer an opportunity to design ROS-responsive drug delivery systems (DDSs) or ROS-based cancer therapies such as chemodynamic therapy. However, their anticancer efficacies are hampered by the ROS-consuming nature of these DDSs as well as the high concentration of reductive agents like glutathione (GSH). Here we developed a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde (CA)-based ROS-replenishing organic ligand (TCA). TCA can ROS-responsively release CA to supplement intracellular ROS and deplete GSH by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitated efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo studies revealed that ROS-replenishing PCFD exhibited much better anticancer effect than ROS-consuming control nanoparticle PAFD. The ingenious ROS-replenishing strategy could be expanded to construct versatile ROS-responsive DDSs and ROS-based nanomedicines with potentiated anticancer activity. STATEMENT OF SIGNIFICANCE: We develop a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde-based reactive oxygen species (ROS)-replenishing organic ligand. This functional ligand can ROS-responsively release cinnamaldehyde to supplement intracellular H2O2 and deplete glutathione (GSH) by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitates efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo studies reveal that ROS-replenishing PCFD exhibit much better anticancer effect than ROS consuming counterpart. This study provides a facile and straightforward strategy to design ROS amplifying nanoplatforms for cancer treatment.


Asunto(s)
Ferroptosis , Nanopartículas , Acroleína/análogos & derivados , Apoptosis , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Glutatión/farmacología , Homeostasis , Peróxido de Hidrógeno/farmacología , Hierro/farmacología , Ligandos , Nanomedicina , Oxidación-Reducción , Polímeros/farmacología , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/farmacología
10.
J Control Release ; 329: 36-49, 2021 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-33259850

RESUMEN

Deep penetration of nanomedicines to cancer cells and tissues is a main obstacle to conquering multidrug resistant (MDR) cancer. Here, we presented redox-responsive polyethyleneimine (disulfide cross-linked PEI, PSP)/tetrahedral DNA (TDNs)/doxorubicin (DOX) nanocomplexes (NCs), PSP/TDNs@DOX NCs, to accomplish tumor cell/tissue penetration for overcoming MDR. The NCs can respond to glutathione and DNase I to disassociate and release DOX. In vitro study revealed that the NCs (N/P = 30) with positive charge could be associated to cell membranes and "dig holes" on them, evoking the membrane-breaking for enhanced cellular internalization and bypassing endocytosis regardless of drug-resistant mechanism. Transwell and 3D tumor models study established that NCs can efficiently depart from cells through "holes leakage" and "infected" surrounding cells to penetrate into deep tumor tissues. In vivo study showed that the PSP/TDNs@DOX NCs exhibited superior tumor penetration and therapeutic efficiency in xenografted drug-resistant tumor mouse models including human breast (MCF-7/R) and ovarian (SKOV3/R) cancer, which represent MDR with characteristics of DOX efflux and impermeability, respectively.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Animales , Línea Celular Tumoral , ADN , Doxorrubicina , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Femenino , Humanos , Células MCF-7 , Ratones , Oxidación-Reducción , Polietileneimina
11.
J Mater Chem B ; 9(18): 3863-3873, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33928320

RESUMEN

Synthetic, biodegradable polymers hold great potential in dura mater substitution. In this study, a dura mater-mimetic double-layer film@sponge composite was developed. The composite contains a poly(caprolactone-co-lactide) (PCLA) film and polyurethane (PU) sponge, which simulates the hard and soft layers of dura mater, respectively. PCLA films were prepared by a solution-casting method and showed excellent mechanical properties and tolerance to water. PU sponge was hydrophilic and had a high water-absorption rate (about 500%). The double-layer composite (film@sponge) integrated the good mechanical properties of the films and the good water absorption of the sponge. The excellent biocompatibility and biodegradability of the PCLA film@PU sponge composites were verified by in vitro degradation and cytotoxicity study and the in vivo implantation in the back of rats. Importantly, the film@sponge composite had a suitable degradation rate and good biocompatibility, holding potential in the field of dural repair.


Asunto(s)
Vendajes , Materiales Biocompatibles/química , Polímeros/química , Animales , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Duramadre/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Masculino , Ratones , Poliésteres/química , Poliuretanos/química , Ratas , Ratas Sprague-Dawley , Regeneración/efectos de los fármacos , Resistencia a la Tracción , Agua/química
12.
J Mater Chem B ; 9(18): 3874-3884, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33928321

RESUMEN

Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis (UC), is a chronic disease characterized by diffuse mucosal inflammation limited to the colon. Topical drug delivery systems that could be facilely performed and efficiently retained at colon sites are attractive for clinical IBD treatment. Herein, we report the exploration of an injectable thermosensitive copolymer hydrogel as a topical formulation for IBD treatment and demonstrate its feasibility in UC treatment by shielding ulcer sites from the external environment and being a drug reservoir for sustained release. Poly(aliphatic ester)-based triblock copolymer, poly(dl-lactic acid)-poly(ethylene glycol)-poly(dl-lactic acid) (PDLLA-PEG-PDLLA), adopts the solution state at room temperature yet a gel state at body temperature when the polymer concentration is more than 11%. The gel acts not only as a physical mucosal barrier for protecting ulcer sites from microorganisms like bacteria but also as a mesalazine depot for enhanced drug retention in the colon for localized, sustained drug release. In vivo UC treatment reveals that blank gel as a mucosal protector shows nearly the same treatment effect to mesalazine SR granules. Mesalazine-loaded gel significantly suppresses inflammation and has the best outcomes of indices such as colonic length, mucosal injury index, pathological tissue, and inflammatory factor. The injectable thermosensitive polymer hydrogel represents a novel, robust platform for the efficient treatment of IBD by acting as a physical shield to block out the pro-inflammatory factors as well as a drug depot for enhanced drug retention and controlled delivery.


Asunto(s)
Colitis/tratamiento farmacológico , Portadores de Fármacos/química , Hidrogeles/química , Mesalamina/uso terapéutico , Polímeros/química , Animales , Materiales Biocompatibles/química , Colitis/patología , Modelos Animales de Enfermedad , Liberación de Fármacos , Hidrogeles/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Mesalamina/química , Mesalamina/metabolismo , Mesalamina/farmacología , Ratones , Ratones Endogámicos BALB C , Poliésteres/química , Polietilenglicoles/química , Temperatura
13.
J Mater Chem B ; 9(20): 4201-4210, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-33997867

RESUMEN

Chemo-immunotherapy is a promising model for the combination treatment of cancer. Many solid tumors overexpress programmed cell death ligand (PD-L1) for immune suppression. In this study, a PD-L1 binding peptide conjugate (DCS) nanoparticle with tumor extracellular pH-responsiveness was developed for efficient chemo-immunotherapy of colon cancer. A hydrophilic D-type polypeptide (D-PPA) and two hydrophobic stearyl chains were linked with a pH-sensitive linker to obtain amphiphilic DCS, which could self-assemble into nanoparticles (NPs). Anticancer agent doxorubicin (DOX) was loaded to obtain DOX@DCS NPs, which could accumulate at the tumor site by enhanced permeability and retention effect and release D-PPA at tumor extracellular pH. The release of D-PPA could not only lead to instability and aggregation of NPs for enhanced tumor retention but also block PD-1/PD-L1 to avoid immune escape and elicit enhanced immune response. In addition, DOX could induce immunogenic cell death (ICD) of cancer cells and promote anti-tumor immune response with the combination of PD-1/PD-L1 blocking. DOX@DCS showed efficient inhibition of CT26 tumors and induced immune response both in vitro and in vivo. Overall, our study reported a facile yet robust nanosystem based on an immune blocking peptide and a chemotherapeutic ICD inducer for efficient chemo-immunotherapy of cancer.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Antígeno B7-H1/farmacología , Materiales Biocompatibles/farmacología , Doxorrubicina/farmacología , Inmunoterapia , Nanopartículas/química , Animales , Antibióticos Antineoplásicos/química , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Antígeno B7-H1/química , Materiales Biocompatibles/química , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/inmunología , Doxorrubicina/química , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , Microambiente Tumoral/efectos de los fármacos
14.
J Mater Chem B ; 8(14): 2805-2813, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32163088

RESUMEN

Photoimmunotherapy, which combines local photothermal therapy (PTT) with immunological stimulation, is a promising modality for cancer treatment. Herein, we have reported a photothermal-immunotherapy of melanoma using pegylated black phosphorus nanosheets (BP-PEG NSs) and imiquimod (R837) as the photothermal conversion agent and the immunoadjuvant, respectively. The photothermal stability of BP NSs was remarkably enhanced after the modification of poly(ethylene glycol) (PEG) by electrostatic interactions. The in situ generation of tumor-associated antigens by PTT elicited a strong immune response in the presence of R837, achieving a photoimmunotherapy of B16 melanoma. This photoimmunotherapy stimulated a stronger immune response both in vitro and in vivo than monotherapy, inducing a much greater release of cytokines such as IL-6, IL-12, and TNF-α. In vivo antitumor studies in B16 tumor-bearing mice demonstrated that photoimmunotherapy showed the best tumor inhibition effects. Our study suggested that BP-PEG NS-based PTT primed with an immunoadjuvant can be used for synergistic photoimmunotherapy of melanomas.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antineoplásicos/farmacología , Inmunoterapia , Melanoma Experimental/terapia , Nanopartículas/química , Fósforo/farmacología , Polietilenglicoles/farmacología , Adyuvantes Inmunológicos/síntesis química , Adyuvantes Inmunológicos/química , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Rayos Láser , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Tamaño de la Partícula , Fósforo/química , Procesos Fotoquímicos , Polietilenglicoles/química , Propiedades de Superficie , Células Tumorales Cultivadas
15.
J Mater Chem B ; 8(8): 1728-1738, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32022097

RESUMEN

Polymer microspheres are attracting wide attention in localized cancer therapy owing to the excellent biocompatibility and drug loading capacity, controllable biodegradation speeds, and minimized systemic toxicity. Herein, we presented poly(ester-thioether) microspheres, porous and nonporous, as drug depots for localized therapy of non-small cell lung cancer (NSCLC). Specifically, erlotinib and α-tocopheryl succinate (α-TOS), which are respectively an epidermal growth factor receptor (EGFR) inhibitor and mitochondria destabilizer, were efficiently loaded into porous and nonporous poly(ester-thioether) microspheres for the treatment of EGFR-overexpressing NSCLC (A549 cells). The poly(ester-thioether) microspheres significantly improved the bioavailability of both erlotinib and α-TOS in comparison to the free drug combination, realizing synergistic inhibition of A549 cells both in vitro and in vivo. The porous microspheres displayed faster degradation and drug release than the nonporous counterpart, thereby showing better anticancer efficacy. Overall, our study reported a new anticancer strategy of erlotinib and α-TOS combination for therapy of NSCLC, and established that poly(ester-thioether) microspheres could be a robust and biodegradable reservoir for drug delivery and localized cancer therapy.


Asunto(s)
Clorhidrato de Erlotinib/química , Microesferas , Polímeros/química , Inhibidores de Proteínas Quinasas/química , alfa-Tocoferol/química , Células A549 , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Portadores de Fármacos/química , Quimioterapia Combinada , Clorhidrato de Erlotinib/metabolismo , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Desnudos , Porosidad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , alfa-Tocoferol/farmacología , alfa-Tocoferol/uso terapéutico
16.
J Mater Chem B ; 8(6): 1235-1244, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31957757

RESUMEN

Herein, we reported a primary amine containing polycationic polymer to load an oppositely charged anticancer drug (doxorubicin, DOX) and a photosensitizer (chlorin e6, Ce6) for combinational chemo-photodynamic therapy. The electrostatic interactions as well as other multiple interactions between the polymer and payloads endowed the drug-loaded nanoparticles with excellent stability. Moreover, the electrostatic attraction between the cationic polymer and anionic Ce6 dictated that Ce6 had higher loading efficiency than DOX. DOX showed pH-responsive drug release owing to the increased solubility of protonated DOX and reduced interaction with the partially protonated polymer under acidic conditions. In contrast, Ce6 showed pH-insensitive release because of the smaller change in solubility and the intense interactions between Ce6 and the polymer. Synergistic chemo/photodynamic therapy of 4T1 cancer cells was achieved by light-triggered reactive oxygen species (ROS)-mediated enhanced cellular uptake and effective endo/lysosomal escape of drug-loaded nanoparticles. Our study demonstrated that the polycationic polymer could act as a robust carrier for differential loading and release of oppositely charged cargos for combinational therapy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Polímeros/química , Porfirinas/farmacología , Animales , Antibióticos Antineoplásicos/química , Cationes/síntesis química , Cationes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Clorofilidas , Doxorrubicina/química , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Luz , Masculino , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Células 3T3 NIH , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Polímeros/síntesis química , Porfirinas/química , Propiedades de Superficie
17.
Macromol Biosci ; 19(10): e1900171, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31486275

RESUMEN

Porous polymer microspheres (PPMs) have been widely applied in various biomedical fields. Herein, the self-assisted preparation of poly(ester-thioether)-based porous microspheres and hierarchical microcages, whose pore sizes can be controlled by varying the polymer structures, is reported. Poly(ester-thioether)s with alkyl side chains (carbon atom numbers were 2, 4, and 8) can generate hollow porous microspheres; the longer alkyl chain length, the larger pore size of microspheres. The allyl-modified poly(ester-thioether) (PHBDT-g-C3 ) can form highly open, hierarchically interconnected microcages. A formation mechanism of these PPMs is proposed; the hydrophobic side chains-mediated stabilization of oil droplets dictate the droplet aggregation and following solvent evaporation, which is the key to the formation of PPMs. The hierarchically interconnected microcages of PHBDT-g-C3 are due to the partially crosslinking of polymers. Pore sizes of PPMs can be further tuned by a simple mixing strategy of poly(ester-thioether)s with different pore-forming abilities. The potential application of these PPMs as H2 O2 -responsive vehicles for delivery of hydrophobic (Nile Red) and hydrophilic (doxorubicin hydrochloride) cargos is also investigated. The microspheres with larger pore sizes show faster in vitro drug release. The poly(ester-thioether)-based polymer microspheres can open a new avenue for the design of PPMs and provide a H2 O2 -responsive drug delivery platform.


Asunto(s)
Doxorrubicina , Microesferas , Oxazinas , Poliésteres , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Oxazinas/química , Oxazinas/farmacocinética , Oxazinas/farmacología , Poliésteres/síntesis química , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacología , Porosidad
18.
J Mater Chem B ; 7(6): 1005-1016, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32255105

RESUMEN

Biodegradable and stimuli-responsive polymers have been widely explored due to their great potential in various biomedical applications. Here, biodegradable and oxidation-responsive poly(ester-thioether)s with different backbones were prepared by polymerization of dithiols and diacrylates. Two isomeric dithiol monomers, 2,3-dimercaptobutane (DMB) and 1,4-butanedithiol (BDT), were employed to synthesize poly(ester-thioether)s in the presence of 1,6-hexanediol diacrylate (HDA). The polymerization and oxidation kinetics of poly(ester-thioether)s were found to be controllable by tuning the polymer backbones, which were prepared using different monomers. The polymerization kinetics demonstrated that BDT showed a faster polymerization rate than DMB due to less steric hindrance. Poly(ester-thioether)s PHBD and PHDM, which were prepared from BDT and DMB with HDA, respectively, showed the fastest and slowest oxidation-responsiveness both in THF solution and in the form of polymer films. Finally, the potential application of poly(ester-thioether)s as drug vehicles for anticancer therapy was confirmed by using doxorubicin (DOX) as a model drug. The DOX-loaded micelle DOX/mPEG-PHBD showed much faster H2O2-responsive drug release and better anticancer efficacy in both MCF-7 and 4T1 cells due to the higher sensitivity of PHBD to H2O2.


Asunto(s)
Antineoplásicos/química , Poliésteres/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/química , Doxorrubicina/farmacología , Portadores de Fármacos/química , Liberación de Fármacos , Humanos , Peróxido de Hidrógeno/química , Cinética , Micelas , Oxidación-Reducción , Poliésteres/farmacología , Polimerizacion
19.
Colloids Surf B Biointerfaces ; 181: 252-260, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31153020

RESUMEN

Thioketal and thioether are moieties used to fabricate reactive oxygen species (ROS)-responsive polymers for drug delivery. In this paper, three amphiphilic copolymers of mPEG-poly(ester-thioether), mPEG-poly(thioketal-ester) and mPEG-poly(thioketal-ester-thioether) were synthesized. The ROS-responsive behaviors of the three copolymers nanoparticles as drug carriers were investigated. The ROS-sensitivity was demonstrated by NMR, DLS, and SEM. mPEG-poly(ester-thioether) nanoparticles exhibited the fastest drug release rate, which possessed the best ROS sensitivity. The in vitro anticancer activity of the DOX-loaded nanoparticles was studied, the results revealed that the mPEG-poly(ester-thioether) nanoparticles showed the most efficient anticancer activity. Notably, all the three ROS-responsive copolymers nanoparticles showed enhanced cellular uptake and anticancer efficacy comparing to the control mPEG-b-PCL nanoparticles.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Antibióticos Antineoplásicos/síntesis química , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/síntesis química , Doxorrubicina/química , Portadores de Fármacos/química , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Micelas , Estructura Molecular
20.
J Biomed Nanotechnol ; 14(8): 1409-1419, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29903056

RESUMEN

Bio-inspired supramolecular self-assembly have been widely explored in biomedical engineering, especially in the field of drug delivery. Here, viral capsid analogue pH-Sensitive polymeric micelles HA-Hyd-DOX were reported, where natural polysacarrides hyaluronic acid (HA) and anticancer drug doxorubicin (DOX), were linked through a hydrazone bond with a high drug loading content of 33.09 wt%. The polymeric micelles look like artificial virus capsids from "core-shell" structures. In addition, the polymeric backbone HA and hydrazone bonds were destroyed in the presence of hyaluronidase in cancer cells and under the acidic conditions of pH = 5 respectively, thereby prodrug-based polymeric micelles could penetrate into the tumor and DOX could be released in lysosomes to enhance anticancer efficacy. With the comparison of typical prodrug-based polymeric micelles mPEG-Hyd-DOX system where DOX was linked to methoxy poly(ethylene glycol) with a hydrazone bond linkage, HA-Hyd-DOX showed greater inhibition to cancer cells due to the better penetration. Such viral capsids mimicking polymeric micelles provided some remarkable benefits for drug delivery, including, high drug loading efficiency, controlled drug release and excellent biodegradable.


Asunto(s)
Micelas , Antineoplásicos , Cápside , Doxorrubicina , Sistemas de Liberación de Medicamentos , Concentración de Iones de Hidrógeno , Polietilenglicoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA