Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Arch Microbiol ; 205(1): 34, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36542149

RESUMEN

Polyhydroxyalkanoates (PHAs) including poly-3-hydroxybutyrate (P3HB) as secondary metabolisms were in vitro produced by the edible basidiomycetous mushroom Astraeus odoratus during its growth on malt agar extract. Various carbon and nitrogen sources containing cellulose, glucose, glycerol, rice straw powder, soybean meal and peptone were investigated for the growth of basidiomycetous mushrooms. During cultivation, the A. odoratus culture exudated the considerably extracellular fluid up to approx. 2.3 ml on 2% malt extract agar plate within 7 days. The chemical compounds of the exudated fluid were further investigated by Fourier-transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS); and its morphology of the lyophilized sample was observed by scanning electron microscope (SEM). FTIR results showed the characteristic bands of OH at 3445 cm-1, CH/CH2/symmetric CH3 (stretch) at 2923 and 2852 cm-1, C=O at 1730 cm-1, asymmetric CH3 (bend) at 1454 and 1414 cm-1, C-O of COO- at 1396 cm-1 and C-O-C at 1223, 1160, 1116, 1058 and 1019 cm-1 which were similar to the absorptive characteristics of P3HB. Methyl ester derivatives of GC/MS results identified 7 compounds including: 3-hydroxybutanoic (monomer of PHB), aminobenzoic, salicylic, hexadecenoic, octadecadienoic, octadecenoic and octadecanoic acids. SEM images revealed a fibriform and porous materials. Hence, the occurrence of PHAs was first described in a basidiomycetous mushroom A. odoratus. Thus, PHAs could be found not only in bacteria and but also in basidiomycetous mushroom, which can be promising target for bioplastics and green environmental studies.


Asunto(s)
Agaricales , Basidiomycota , Polihidroxialcanoatos , Polihidroxialcanoatos/química , Agar , Poliésteres , Hidroxibutiratos
2.
Biomacromolecules ; 23(11): 4532-4546, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36169096

RESUMEN

The efficiency of nerve guide conduits (NGCs) in repairing peripheral nerve injury is not high enough yet to be a substitute for autografts and is still insufficient for clinical use. To improve this efficiency, 3D electrospun scaffolds (3D/E) of poly(l-lactide-co-ε-caprolactone) (PLCL) and poly(l-lactide-co-glycolide) (PLGA) were designed and fabricated by the combination of 3D printing and electrospinning techniques, resulting in an ideal porous architecture for NGCs. Polypyrrole (PPy) was deposited on PLCL and PLGA scaffolds to enhance biocompatibility for nerve recovery. The designed pore architecture of these "PLCL-3D/E" and "PLGA-3D/E" scaffolds exhibited a combination of nano- and microscale structures. The mean pore size of PLCL-3D/E and PLGA-3D/E scaffolds were 289 ± 79 and 287 ± 95 nm, respectively, which meets the required pore size for NGCs. Furthermore, the addition of PPy on the surfaces of both PLCL-3D/E (PLCL-3D/E/PPy) and PLGA-3D/E (PLGA-3D/E/PPy) led to an increase in their hydrophilicity, conductivity, and noncytotoxicity compared to noncoated PPy scaffolds. Both PLCL-3D/E/PPy and PLGA-3D/E/PPy showed conductivity maintained at 12.40 ± 0.12 and 10.50 ± 0.08 Scm-1 for up to 15 and 9 weeks, respectively, which are adequate for the electroconduction of neuron cells. Notably, the PLGA-3D/E/PPy scaffold showed superior cytocompatibility when compared with PLCL-3D/E/PPy, as evident via the viability assay, proliferation, and attachment of L929 and SC cells. Furthermore, analysis of cell health through membrane leakage and apoptotic indices showed that the 3D/E/PPy scaffolds displayed significant decreases in membrane leakage and reductions in necrotic tissue. Our finding suggests that these 3D/E/PPy scaffolds have a favorable design architecture and biocompatibility with potential for use in peripheral nerve regeneration applications.


Asunto(s)
Polímeros , Pirroles , Ingeniería de Tejidos/métodos , Poliésteres , Impresión Tridimensional , Andamios del Tejido
3.
Biomacromolecules ; 22(9): 3839-3859, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34378381

RESUMEN

This study focuses on the synthesis of poly(ε-caprolactone) diacrylate (PCLDA) for the fabrication of micelle-cross-linked sodium AMPS wound dressing hydrogels. The novel synthetic approach of PCLDA is functionalizing a PCL diol with acrylic acid. The influences of varying the PCL diol/AA molar ratio and temperature on the suitable conditions for the synthesis of PCLDA are discussed. The hydrogel was synthesized through micellar copolymerization of sodium 2-acrylamido-2-methylpropane sulfonate (Na-AMPS) as a basic monomer and PCLDA as a hydrophobic association monomer. In this study, an attempt was made to develop new hydrogel wound dressings meant for the release of antibacterial drugs (ciprofloxacin and silver sulfadiazine). The chemical structures, morphology, porosity, and water interaction of the hydrogels were characterized. The hydrogels' swelling ratio and water vapor transmission rate (WVTR) showed a high swelling capacity (4688-10753%) and good WVTR (approximately 2000 g·m-2·day-1), which can be controlled through variation of the PCLDA concentration. The mechanical property results confirmed that PCLDA improved the mechanical properties of the hydrogel; the stress increased from 37 to 68 kPa, and the strain increased from 198 to 360% with increasing PCLDA (0-30% wt of Na-AMPS). These hydrogels presented no cytotoxicity based on over 70% cell viability responses (L929 fibroblasts) using an in vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Additionally, the drug release mechanism, kinetic models, and antibacterial activity were determined. The results demonstrated that antibiotics were released from the hydrogel with a Fickian diffusion mechanism and antibacterial activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus). Based on the results obtained, and bearing in mind that further progress still needs to be made, the fabricated hydrogels show considerable potential for meeting the stringent property requirements of hydrogel wound dressings.


Asunto(s)
Hidrogeles , Micelas , Antibacterianos/farmacología , Vendajes , Poliésteres , Sodio
4.
Prep Biochem Biotechnol ; 47(7): 730-738, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28414263

RESUMEN

This study aims to find the optimal medium and conditions for polylactic acid (PLA)-degrading enzyme production by Amycolatopsis sp. SCM_MK2-4. Screening of the most effective components in the enzyme production medium by Plackett-Burman design revealed that the silk cocoon and PLA film were the most significant variables enhancing the PLA-degrading enzyme production. After an response surface methodology, a maximum amount of PLA-degrading enzyme activity at 0.74 U mL-1 was predicted and successfully validated at 95% after 0.39% (w/v) silk cocoon and 1.62% (w/v) PLA film were applied to the basal medium. The optimal initial pH value, temperature, and inoculum size were evaluated by a method considering one-factor-at-a-time. The values were recorded at an initial pH in the range of 7.5-9.0, a temperature of 30-32°C, and an inoculum size of 4-10%. The highest activity of approximately 0.95 U mL-1 was achieved after 4 days of cultivation using the optimized medium and under optimized conditions in a shake flask. Upscaling to the use of a 3-L stirred tank fermenter was found to be successful with a PLA-degrading activity of 5.53 U mL-1; which represents a 51-fold increase in the activity compared with that obtained from the nonoptimized medium and conditions in the shake flask.


Asunto(s)
Actinomycetales/enzimología , Microbiología Industrial/métodos , Péptido Hidrolasas/metabolismo , Poliésteres/metabolismo , Actinomycetales/metabolismo , Algoritmos , Reactores Biológicos , Medios de Cultivo/metabolismo , Concentración de Iones de Hidrógeno , Microbiología Industrial/instrumentación , Temperatura
5.
World J Microbiol Biotechnol ; 31(9): 1431-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26135516

RESUMEN

Forty agricultural soils were collected from Chiang Mai and Lampang provinces in northern Thailand. Bacteria, actinomycetes and fungi were isolated and screened for their ability to degrade polylactic acid (PLA), polycaprolactone (PCL) and poly(butylene succinate) (PBS) by the agar diffusion method. Sixty-seven actinomycetes, seven bacteria and five fungal isolates were obtained. The majority of actinomycetes were Streptomyces based on morphological characteristic, chemotaxonomy and 16S rRNA gene data. Seventy-nine microorganisms were isolated from 40 soil samples. Twenty-six isolates showed PLA-degradation (32.9 %), 44 isolates showed PBS-degradation (55.7 %) and 58 isolates showed PCL-degradation (73.4 %). Interestingly, 16 isolates (20.2 %) could degrade all three types of bioplastics used in this study. The Amycolatopsis sp. strain SCM_MK2-4 showed the highest enzyme activity for both PLA and PCL, 0.046 and 0.023 U/mL, respectively. Moreover, this strain produced protease, esterase and lipase on agar plates. Approximately, 36.7 % of the PLA film was degraded by Amycolatopsis sp. SCM_MK2-4 after 7 days of cultivation at 30 °C in culture broth.


Asunto(s)
Actinobacteria/aislamiento & purificación , Bacterias/aislamiento & purificación , Biopolímeros/metabolismo , Hongos/aislamiento & purificación , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/fisiología , Bacterias/clasificación , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Biodegradación Ambiental , Butileno Glicoles/metabolismo , Hongos/clasificación , Hongos/genética , Hongos/fisiología , Ácido Láctico/metabolismo , Poliésteres/metabolismo , Polímeros/metabolismo , Microbiología del Suelo , Tailandia
6.
Int J Biol Macromol ; 270(Pt 2): 132380, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754656

RESUMEN

Clean water and sanitation issues motivate researchers to develop water evaporators for freshwater generation. The composite membrane evaporator was electrospun herein based on poly(lactic acid) (PLA) and Ti3AlC2 MAX phase as a property enhancer. As a precursor for the MXenes synthesis, the MAX phase has never been explored with PLA for water evaporator potential. Alternative use of the MAX phase can reduce the production cost arising from chemical synthesis. This work explored the potential of the MAX phase as an additive to enhance PLA membrane performance for steam generation and desalination applications. Under the infrared irradiation (∼1.0 kW/m2), the mechanically-improved PLA/MAX phase membrane showed an enhanced water evaporation rate of 1.70 kg/m2 h (93.93 % efficiency), with an approximately 52 % rate increment relative to the PLA membrane. Based on the artificial seawater (3.5 % w/w), the membrane exhibited an evaporation rate of 1.60 kg/m2 h (87.57 % efficiency). The membrane showed self-floating ability at the air-water interface, excellent thermal stability over the entire operating temperatures, and reusability after repeated cycles. Moreover, the generated freshwater contained exceptionally low cations concentrations, as low as those in potable water. The developed composite membrane also had proved its potential for solar desalination in the water generation field.


Asunto(s)
Membranas Artificiales , Poliésteres , Vapor , Titanio , Purificación del Agua , Poliésteres/química , Titanio/química , Purificación del Agua/métodos , Luz Solar
7.
Int J Biol Macromol ; 262(Pt 1): 129967, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316324

RESUMEN

MXenes, synthesized from their precursor MAX phases, have been extensively researched as additives to enhance the drug delivery performance of polymer matrices, whereas there is a limited number of previous reports on the use of MAX phases themselves for such applications. The use of MAX phases can exclude the complicated synthesis procedure and lessen resultant production and environmental costs required to convert MAX phases to MXenes. Herein, electrospun membranes of poly(lactic acid) (PLA) and a MAX phase (Ti3AlC2) have been fabricated for curcumin delivery. The composite membrane exhibits significantly higher toughness (8.82 MJ m-3) than the plasticized PLA membrane (0.63 MJ m-3) with low cytotoxicity, supporting proliferation of mouse fibroblast L929 cells. The curcumin-loaded composite membrane exhibits high water vapor transmission (∼7350 g m-2 day-1), porosity (∼85 %), water wettability, and antibacterial properties against E. coli and S. aureus. Seven-day curcumin release is enhanced from 45 % (PLA) to 67 % (composite) due to curcumin diffusion from the polymer fibers and MAX phase surface that contributes to overall increased curcumin adsorption and release sites. This work demonstrates the potential of the MAX phase to enhance both properties and curcumin delivery, promising for other eco-friendly systems for sustainable drug delivery applications.


Asunto(s)
Curcumina , Animales , Ratones , Curcumina/farmacología , Staphylococcus aureus , Escherichia coli , Titanio , Poliésteres , Antibacterianos/farmacología , Polímeros
8.
Int J Biol Macromol ; 253(Pt 2): 126712, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673164

RESUMEN

Bacterial cellulose (BC) is a biomaterial being investigated for a range of applications. Herein, BC films derived from nata de coco pieces are reinforced by two-dimensional molybdenum disulfide (MoS2) and helical carbon nanotubes (HCNTs) to enhance their tensile mechanical properties, and the biocompatibility of the BC composite films is demonstrated. A simple preparation is presented using a kitchen blender to disperse and blend the BC fibers and additives in a common fabrication medium, followed by vacuum filtration. The mechanical properties of the BC/MoS2/HCNTs composite films are enhanced due to the synergistic effect of MoS2 and HCNTs embedded in the BC films. The MoS2/HCNTs binary additive (1 phr) is capable of increasing the strength and Young's modulus by 148 % and 333 %, respectively, relative to the BC films. The cell cytotoxicity of the BC/MoS2/HCNTs films was assessed using an MTT assay. The composite films are biocompatible with a cell viability of L929 fibroblast cells >70 %, coupled with observations of direct cell attachment on the films. The composite films also exhibited good performance in absorbing and releasing gentamicin antibiotics to inhibit the growth of Escherichia coli and Staphylococcus aureus. The BC/MoS2/HCNTs films are thus potential BC-based candidates as biocompatible robust antibiotic carriers.


Asunto(s)
Celulosa , Nanotubos de Carbono , Celulosa/farmacología , Portadores de Fármacos/farmacología , Molibdeno/farmacología , Antibacterianos/farmacología , Escherichia coli
9.
Sci Rep ; 13(1): 727, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639688

RESUMEN

Open burning of agricultural residues causes numerous complications including particulate matter pollution in the air, soil degradation, global warming and many more. Since they possess bio-conversion potential, agro-industrial residues including sugarcane bagasse (SCB), rice straw (RS), corncob (CC) and sweet sorghum bagasse (SSB) were chosen for the study. Yeast strains, Candida tropicalis, C. shehatae, Saccharomyces cerevisiae, and Kluyveromyces marxianus var. marxianus were compared for their production potential of bioethanol and phenylacetylcarbinol (PAC), an intermediate in the manufacture of crucial pharmaceuticals, namely, ephedrine, and pseudoephedrine. Among the substrates and yeasts evaluated, RS cultivated with C. tropicalis produced significantly (p ≤ 0.05) higher ethanol concentration at 15.3 g L-1 after 24 h cultivation. The product per substrate yield (Yeth/s) was 0.38 g g-1 with the volumetric productivity (Qp) of 0.64 g L-1 h-1 and fermentation efficiency of 73.6% based on a theoretical yield of 0.51 g ethanol/g glucose. C. tropicalis grown in RS medium produced 0.303 U mL-1 pyruvate decarboxylase (PDC), a key enzyme that catalyzes the production of PAC, with a specific activity of 0.400 U mg-1 protein after 24 h cultivation. This present study also compared the whole cells biomass of C. tropicalis with its partially purified PDC preparation for PAC biotransformation. The whole cells C. tropicalis PDC at 1.29 U mL-1 produced an overall concentration of 62.3 mM PAC, which was 68.4% higher when compared to partially purified enzyme preparation. The results suggest that the valorization of lignocellulosic residues into bioethanol and PAC will not only aid in mitigating the environmental challenge posed by their surroundings but also has the potential to improve the bioeconomy.


Asunto(s)
Oryza , Saccharum , Sorghum , Celulosa/metabolismo , Oryza/metabolismo , Sorghum/metabolismo , Saccharum/metabolismo , Fermentación , Saccharomyces cerevisiae/metabolismo , Candida tropicalis/metabolismo , Etanol/metabolismo
10.
Int J Biol Macromol ; 242(Pt 1): 124726, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37172702

RESUMEN

Plastic waste is one cause of climate change. To solve this problem, packaging films are increasingly produced from biodegradable polymers. Eco-friendly carboxymethyl cellulose and its blends have been developed for such a solution. Herein, a unique strategy is demonstrated to improve the mechanical and barrier properties of carboxymethyl cellulose/poly(vinyl alcohol) (CMC/PVA) blended films for the packaging of nonfood dried products. The blended films were impregnated with buckypapers containing different combinations of multiwalled carbon nanotubes, two-dimensional molybdenum disulfide (2D MoS2) nanoplatelets, and helical carbon nanotubes (HCNTs). Compared to the blend, the polymer composite films exhibit significant increases in tensile strength (~105 %, from 25.53 to 52.41 MPa), Young's modulus (~297 %, from 155.48 to 617.48 MPa), and toughness (~46 %, from 6.69 to 9.75 MJ m-3). Polymer composite films containing HCNTs in buckypapers offer the highest toughness. For barrier properties, the polymer composite films are opaque. The water vapor transmission rate of the blended films decreases (~52 %, from 13.09 to 6.25 g h-1 m-2). Moreover, the maximum thermal-degradation temperature of the blend rises from 296 to 301 °C, especially for the polymer composite films with buckypapers containing MoS2 nanosheets that contribute to the barrier effect for both water vapor and thermal-decomposition gas molecules.


Asunto(s)
Nanotubos de Carbono , Alcohol Polivinílico , Carboximetilcelulosa de Sodio , Vapor , Molibdeno , Celulosa , Resistencia a la Tracción
11.
Carbohydr Polym ; 301(Pt B): 120328, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446505

RESUMEN

An antimicrobial thermoplastic starch (TPS) was developed by melt-mixing TPS with chlorhexidine gluconate (CHG) and epoxy resin (Er). The tensile strength and hardness of the TPSCh blend increased with the addition of Er (TPSCh/Er), especially at 5 wt% Er (TPSCh/Er5) (19.5 MPa and 95 %, respectively). The water contact angle of TPSCh/Er was higher than those of TPS and TPSCh because of the improved interfacial tension. Fourier transform infrared and nuclear magnetic resonance analyses confirmed the reaction between the epoxy groups of Er, hydroxyl groups of starch, and amino groups of CHG. TPSCh/Er5 exhibited a significantly lower CHG release than TPSCh owing to the rearrangement of TPSCh chains via Er crosslinking. TPSCh/Er0.5 and TPSCh/Er1 showed inhibition zones against both tested bacteria (Staphylococcus aureus and Bacillus cereus), whereas TPSCh/Er2.5, TPSCh/Er5, and TPSCh/Er10 showed inhibition zones only against S. aureus. Moreover, TPSCh and TPSCh/Er0.5-2.5 exhibited inhibition zones with Saccharomyces cerevisiae.


Asunto(s)
Antiinfecciosos , Resinas Epoxi , Almidón , Staphylococcus aureus , Antibacterianos
12.
Micromachines (Basel) ; 13(10)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36296114

RESUMEN

Rapid release and diminished stability are two of the limitations associated with the growth factors that are essentially used in dental applications. These growth factors are employed to enhance the quality and quantity of tissue or bone matter during regeneration. Therefore, drug delivery devices and systems have been developed to address these limitations. In this study, bovine serum albumin (BSA), as a representative growth factor, was successfully sustained by encapsulation with the medium-absorbable copolymer, poly(L-lactide-co-glycolide) (PLG) 70:30% mol, via the multiple emulsion method. Different PLG, PVA, and BSA concentrations were used to investigate their effects on the BSA encapsulation efficiency. The suitable ratios leading to a better characterization of microparticles and a higher encapsulation efficiency in producing encapsulated PLG microparticles were 8% (w/v) of PLG, 0.25% (w/v) of PVA, and 8% (w/v) of BSA. Furthermore, an in vitro release study revealed a bursting release of BSA from the encapsulated PLG microsphere in the early phase of development. Subsequently, a gradual release was observed over a period of eight weeks. Furthermore, to encapsulate LL-37, different proteins were used in conjunction with PLG under identical conditions with regard to the loading efficiency and morphology, thereby indicating high variations and poor reproducibility. In conclusion, the encapsulated PLG microparticles could effectively protect the protein during encapsulation and could facilitate sustainable protein release over a period of 60 days. Importantly, an optimal method must be employed in order to achieve a high degree of encapsulation efficiency for all of the protein or growth factors. Accordingly, the outcomes of this study will be useful in the manufacture of drug delivery devices that require medium-sustained release growth factors, particularly in dental treatments.

13.
J Biomater Sci Polym Ed ; 25(10): 1028-44, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24856087

RESUMEN

In this study, for the first time, a biodegradable poly(L-lactide-co-ε-caprolactone), PLC 67:33 copolymer was developed for use as temporary scaffolds in reconstructive nerve surgery. The effect of the surface topology and pore architecture were studied on the biocompatibility for supporting the growth of human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs) and human neuroblastoma cells (hNBCs) as cell models. Porous PLC membranes were prepared by electrospinning and phase immersion precipitation with particulate leaching and nonporous PLC membranes were prepared by solvent casting. From the results, the porous PLC membranes can support hWJ-MSCs and hNBCs cells better than the nonporous PLC membrane, and the interconnected pore scaffold prepared by electrospinning exhibited a more significant supporting attachment of the cells than the open pore and nonporous membranes. We can consider that these electrospun PLC membranes with 3-D interconnecting fiber networks and a high porosity warrant a potential use as nerve guides in reconstructive nerve surgery.


Asunto(s)
Células Madre Mesenquimatosas/citología , Neuroblastoma/patología , Poliésteres/química , Poliésteres/farmacología , Andamios del Tejido/química , Cordón Umbilical/citología , Gelatina de Wharton/citología , Biomarcadores/metabolismo , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ensayo de Materiales , Membranas Artificiales , Células Madre Mesenquimatosas/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Poliésteres/síntesis química , Poliésteres/toxicidad , Porosidad , Solventes/química , Agua/química
14.
Biomed Res Int ; 2014: 741408, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24900983

RESUMEN

Electrospinning can produce nanofibrous scaffolds that mimic the architecture of the extracellular matrix and support cell attachment for tissue engineering applications. In this study, fibrous membranes of polyhydroxybutyrate (PHB) with various loadings of poly(L-lactide-co-ε-caprolactone) (PLCL) were successfully prepared by electrospinning. In comparison to PLCL scaffolds, PLCL blends with PHB exhibited more irregular fibre diameter distributions and higher average fibre diameters but there were no significant differences in pore size. PLCL/PHB scaffolds were more hydrophilic (<120°) with significantly reduced tensile strength (ca. 1 MPa) compared to PLCL scaffolds (150.9 ± 2.8° and 5.8 ± 0.5 MPa). Increasing PLCL loading in PHB/PLCL scaffolds significantly increased the extension at break, (4-6-fold). PLCL/PHB scaffolds supported greater adhesion and proliferation of olfactory ensheathing cells (OECs) than those exhibiting asynchronous growth on culture plates. Mitochondrial activity of cells cultivated on the electrospun blended membranes was enhanced compared to those grown on PLCL and PHB scaffolds (212, 179, and 153%, resp.). Analysis showed that PLCL/PHB nanofibrous membranes promoted cell cycle progression and reduced the onset of necrosis. Thus, electrospun PLCL/PHB composites promoted adhesion and proliferation of OECs when compared to their individual PLCL and PHB components suggesting potential in the repair and engineering of nerve tissue.


Asunto(s)
Materiales Biocompatibles/química , Hidroxibutiratos/química , Nanofibras/química , Poliésteres/química , Andamios del Tejido/química , Animales , Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Hidroxibutiratos/farmacología , Ensayo de Materiales/métodos , Ratones , Mitocondrias/efectos de los fármacos , Poliésteres/farmacología , Resistencia a la Tracción/efectos de los fármacos , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA